Методы генетики. Методы изучения наследственности человека Цитогенетический метод изучения наследственности человека

Генеалогический метод

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных. Родословные человека составлялись на протяжении многих столетий в отношении царствующих семейств в Европе и Азии.

Как метод изучения генетики человека генеалогический метод стали

применять только с начала XX столетия, когда выяснилось, что анализ

родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод. При составлении родословных исходным является человек - пробанд,

родословную которого изучают. Обычно это или больной, или носитель

определенного признака, наследование которого необходимо изучить. При

составлении родословных таблиц используют условные обозначения, предложенные

Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении -арабскими. С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно- доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам

может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Цитогенетичвский метод

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять в исследованиях генетики человека с 1956 г., когда шведские ученые Дж. Тийо и А. Леван, предложив новую методику изучения хромосом, установили, что в кариотипе человека 46, а не 48 хромосом, как

считали ранее. Современный этап в применении цитогенетического метода связан с

разработанным в 1969 г. Т. Касперсоном методом дифференциального окрашивания хромосом, который расширил -возможности цитогенетического анализа, позволив точно идентифицировать хромосомы по характеру распределения в них окрашиваемых сегментов Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. Кроме того, этот метод позволяет изучать процессы мутагенеза на уровне хромосом и

кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

Материалом для цитогенетических исследований служат клетки человека, получаемые из разных тканей,-лимфоциты периферической крови, клетки костного мозга, фибробласты, клетки опухолей и эмбриональных тканей и др. Непременным требованием для изучения хромосом является наличие делящихся клеток. Непосредственное получение таких клеток из организма затруднено, поэтому чаще используют легкодоступный материал, каковым являются лимфоциты периферической крови.

В норме эти клетки не делятся, однако специальная обработка их культуры фитогемагглютинином возвращает их в митотический цикл. Накопление делящихся клеток в стадии метафазы, когда хромосомы максимально спирализованы и хорошо видны в микроскоп, достигается обработкой культуры колхицином или

колцемидом, разрушающим веретено деления и препятствующим расхождению хроматид.

Микроскопирование мазков, приготовленных из культуры таких клеток, позволяет визуально наблюдать хромосомы. Фотографирование метафазных пластинок и последующая обработка фотографий с составлением кариограмм, в которых хромосомы выстроены парами и распределены по группам, позволяют

установить общее число хромосом и обнаружить изменения их количества и структуры в отдельных парах. В качестве экспресс-метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х-хромосом. Оно выглядит как интенсивно окрашенная глыбка, расположенная у ядерной оболочки. При увеличении количества Х-хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа Х-хромосом. При

уменьшении числа Х-хромосом (моносомия X) тельце Барра отсутствует.

В мужском кариотипе Y-хромосома может быть обнаружена по более

интенсивной по сравнению с другими хромосомами люминесценции при обработке

их акрихинипритом и изучении в ультрафиолетовом свете.

Для кратковременного наблюдения клетки помещают просто в жидкую среду на предметное стекло; если нужно длительное наблюдение за клетками, то используются специальные камеры. Это или плоские флаконы с отверстиями, закрытыми тонкими стеклами, или же разборные плоские камеры.

Биохимический метод

В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по

нормальным первичным продуктам генов изучают с помощью биохимических методов. Впервые эти методы стали применять для диагностики генных болезней еще в начале XX в. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных

белков.Дефекты структурных и циркулирующих белков выявляются при изучении их строения. Так, в 60-х гг. XX в. был завершен анализ (3-глобино-вой цепи гемоглобина, состоящей из 146 аминокислотных остатков. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного

белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и поочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором -более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии. Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных

реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

Методы изучения ДНК в генетических исследованиях

Как было показано выше, нарушения первичных продуктов генов выявляются с помощью биохимических методов. Локализация соответствующих повреждений в самом наследственном материале может быть выявлена методами молекулярной генетики. Разработка метода обратной транскрипции ДНК на молекулах мРНК определенных белков с последующим размножением этих ДНК привела к появлению ДНК-зондов для различных мутаций нуклеотидных последовательностей человека. Использование таких ДНК-зондов для гибридизации с ДНК клеток пациента дает возможность выявлять у него соответствующие изменения в наследственном материале, т.е. диагностировать определенные виды генных мутаций (генодиагностика). Важными достижениями молекулярной генетики последних десятилетий явились работы по секвенированию - определению нуклеотидной последовательности ДНК. Это стало возможным благодаря открытию в 60-х гг. XX в. ферментов - рестриктаз, выделенных из бактериальных клеток, которые разрезают молекулу ДНК на фрагменты в строго определенных местах. В естественных условиях

рестрикгазы защищают клетку от проникновения в ее генетический аппарат и размножения в нем чужеродной ДНК. Применение этих ферментов в эксперименте дает возможность получать короткие фрагменты ДНК, в которых относительно легко можно определить последовательность нуклеотидов. Методы молекулярной генетики и генной инженерии позволяют не только диагностировать целый ряд генных мутаций и устанавливать нуклеотидную

последовательность отдельных генов человека, но и размножать (клонировать) их и получать в большом количестве белки -продукты соответствующих генов. Клонирование отдельных фрагментов ДНК осуществляется путем включения их в бактериальные плазмиды, которые, автономно размножаясь в клетке, обеспечивают получение в большом количестве копий соответствующих фрагментов ДНК человека. Последующая экспрессия рекомбинантных ДНК в бактериях позволяет получить белковый продукт соответствующего клонированного человеческого гена. Таким образом, с помощью методов генной инженерии стало возможно получать на основе человеческих генов некоторые первичные генные продукты (инсулин).

Близнецовый метод

Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Он предложен в 1875 г. Гальтоном первоначально для оценки роли наследственности и среды в развитии психических свойств человека. В настоящее время этот метод широко применяют в изучении

наследственности и изменчивости у человека для определения соотносительной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических. Он позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на

организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов. Поэтому среди монозиготных близнецов наблюдается

высокий процент конкордантных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в

формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, т.е. различия. Напротив, сохранение сходства между близнецами, несмотря на различия условий их существования, свидетельствует о наследственной обусловленности признака.

Сопоставление парной конкордантности по данному признаку у генетически идентичных монозиготных и дизиготных близнецов, которые имеют в среднем около 50% общих генов, дает возможность более объективно судить о роли генотипа в формировании признака. Высокая конкордантность в парах монозиготных близнецов и существенно более низкая конкордантность в парах дизиготных близнецов свидетельствуют о значении наследственных различий в этих парах для определения признака. Сходство показателя конкордантности у моно- и

дизиготных близнецов свидетельствует о незначительной роли генетических различий и определяющей роли среды в формировании признака или развития заболевания. Достоверно различающиеся, но достаточно низкие показатели конкордантности в обеих группах близнецов дают возможность судить о наследственной предрасположенности к формированию признака, развивающегося под действием факторов среды.

Для идентификации монозиготности близнецов применяют ряд методов. 1. Полисимптомный метод сравнения близнецов по многим морфологическим признакам (пигментации глаз, волос, кожи, форме волос и особенностям волосяного покрова на голове и теле, форме ушей, носа, губ, ногтей, тела, пальцевым узорам). 2. Методы, основанные на иммунологической идентичности близнецов по эритроцитарным антигенам (системы АВО, MN, резусу), по сывороточным белкам (γ-глобулину). 3. Наиболее достоверный критерий монозиготности предоставляет

трансплантационный тест с применением перекрестной пересадки кожи близнецов. (НЕ ИСПОЛЬЗУЕТСЯ)

Популяционно-статистический метод

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту

встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма

человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании. основой для выяснения генетической структуры популяции является закон генетического равновесия Харди - Вайнберга . Он отражает закономерность, в соответствии с

которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции На основании этого закона, имея данные о частоте

встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Математическим выражением закона Харди - Вайнберга служит формула (р А. + q a)^2, где р и q - частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости

людей с разным генотипом и в первую очередь гетерозигот - носителей скрытого

рецессивного аллеля: p ^2AA + 2pq Aa + q^2аа.

Метод моделирования.

Метод изучения генетических закономерностей на биологически и математических моделях, организм или популяций.

Биологическое моделирование – основанию на законе гомологичных рядом наследственности Вавилова. Основан на том, что роды и виды генетически близкие обладают сходными рядами наследственной изменчивости, с такой правильностью, что зная изменения одного рода или вида можно предсказать из появление, у других родов и видов.

Метод основан на создании моделей наследственных аномалий человека (мутантные линии животных) с целями изучения этиологии и патогенеза наследственных болезней. А также разработки методов лечения – примеры биологических моделей – гемофилия у собак, расщелина губы у грызунов, сахарный диабет у хомякоы, алкоголизм у крыс. Глухонемота у кошек

Математическое моделирование - создание математических моделей популяций с целью расчета: частот генов и генотипов при различном взаимодействии и изменении окружающей среды, эффектов сцепленного наследования при анализе множества сцепленных генов, роли наследственности и среды в развитии признака, риск рождения больного ребенка

Цитогенетический метод изучения наследственности человека представляет собой микроскопический анализ хромосом. Он стал широко применяться с начала 20-х годов 20-го столетия. С помощью метода осуществляется исследование морфологии человеческих хромосом и их подсчет. Его также используют для культивирования лейкоцитов, чтобы получить метафазные пластинки. Далее рассмотрим подробнее, что собой представляет цитогенетический метод изучения наследственности человека.

Общие сведения

Цитогенетический метод исследования генетики человека, его развитие и становление связаны с такими учеными, как Леван и Тио. Они в 1956 году первыми установили точное количество хромосом у людей. Их оказалось не 48, как думали ранее, а 46. Именно это и положило начало исследованию мейотических и митотических хромосом человека. В 1959-м году французскими учеными Готье, Тюрпеном и Леженом была установлена природа синдрома Дауна. Используя цитогенетический метод, они выявили, что болезнь имеет хромосомную этиологию. В последующие годы было описано еще множество патологий, часто встречающихся у людей и имеющих ту же природу. Сегодня цитогенетический метод изучения наследственности используется при диагностировании, составлении хромосомных карт, анализа мутационного процесса и решения прочих важных проблем. В 1960 году в США была разработана 1 Международная классификация. В основе нее использовались размеры хромосом, а также расположение центромеры - первичной перетяжки.

Анализ кариотипа

Оценка и выявление аномалий проводится в несколько приемов. Для выполнения анализа необходим фрагмент периферической крови больного объемом около 1-2 литров. Этапы цитогенетического метода при анализе кариотипа следующие:

  • Культивирование лимфоцитов.
  • Окраска.
  • Микроскопический анализ.

Культивирование лимфоцитов

Эта процедура необходима для стимулирования их деления. Это связано с тем, что возможности цитогенетического метода напрямую зависят от количества клеток, которые находятся на стадии метафазы, в тот момент когда хромосомы собраны наиболее компактно. Длительность культивирования, как правило, 72 часа. Увеличению числа метафазных клеток способствует введение в завершении процесса колхицина. Он приостанавливает на стадии метафазы деление, разрушает его веретено и повышает конденсацию хромосом. Затем клетки перемещаются в гипотонический раствор. Он провоцирует разрыв ядерной оболочки и свободное движение хромосом в цитоплазме.

Окрашивание

На этой стадии процесса клетки фиксируются с помощью уксусной к-ты и этанола в пропорции 1:3. Далее суспензию помещают на предметные стекла и сушат. В соответствии с целями анализа применяются разные приемы дифференциального окрашивания. Длительность процедуры - несколько минут. Окрашивание приводит к возникновению рисунка с поперечной исчерченностью, специфичного для каждой из хромосом.

Микроскопический анализ

Самым трудоемким процессом считается световое микроскопирование. Для его выполнения необходима высокая квалификация специалиста. Чтобы выявить хромосомные аномалии, следует проанализировать не меньше 30-ти пластинок. Весьма результативными считаются компьютерные методы исследования.

Разрешающая способность

Молекулярно-цитогенетический метод может применяться для анализа хромосом, отдельные сегменты которых могут иметь разную окраску. При этом кариотипы в целом похожи на красочные фантастические удивительные картины. Внедрены и активно применяются методы, с помощью которых осуществляется окрашивание хромосом в состоянии покоя, когда они максимально растянуты. Использование таких приемов позволяет идентифицировать сегменты, размер которых порядка 50 килобаз.

Развитие отрасли

В течение последних нескольких лет отмечается достаточно активный сдвиг в становлении области молекулярной биологии. Это прежде всего обуславливается работами по расшифровке генома людей, выполненными в рамках государственных и международных программ "Совокупность человеческих генов". В результате трудов были не только получены обширные по своему объему сведения по строению дезоксирибонуклеиновой кислоты. Были также проведены исследования современных технологий анализа, способов обработки больших объемов информации, созданы и сохранены информационные базы данных. На основании этих материалов сформировалось новое направление - молекулярная генетика. Она позволила обнаружить многочисленные специфичности в функциях хромосомного набора. Цитогенетический метод изучения используется для выявления новых элементов и звеньев, осуществления дешифровки мутации при наличии солидного числа врожденных заболеваний.

Специализированные области

Как видно, цитогенетический метод позволил решить существенные проблемы. В связи с этим стали появляться специализированные направления. В частности, сформировались такие области, как функциональная молекулярная генетика, врачебная, этническая геномика (этногеномика), сравнительная наука, исследующая гены и геномы живых существ и прочие.

Этногеномика

Основной ее задачей является анализ генетического многообразия в разнообразии генов отдельных территориальных общностей, наций, групп. В данном случае необходимо подчеркнуть принципиально важную идею. Благодаря этногеномике генетическая хромосомная механика стала влиять не только на имеющие определенное родство виды науки о терапии и жизнедеятельности, но и на достаточно отчужденные области, как, например, история.

Вариабельность

В процессе декодирования хромосомного набора, в то время как уже выявлены главные особенности в его конструкции, ученым стала ясна серьезность многообразия генома. Анализ вариабельности позволяет решить разнообразные проблемы, как практического, так и теоретического характера. Особое значение цитогенетический метод имеет при оценке развития человечества, принимая во внимание происхождение, цикл перемещения, формирование, родство и взаимодействие разных видов.

Анализ ДНК

Исследования дезоксирибонуклеиновой кислоты людей, населяющих планету сегодня, позволяют получить информацию о достаточно отдаленных явлениях и хронологических фактах, даже до самого момента появления человека. Так, к примеру, было выявлено, что в дезоксирибонуклеиновой кислоте вписано множество событий. Чтобы интерпретировать результаты этих исследований, необходимо рассматривать ДНК разных представителей всех общин, определяя степень и хромосомного родства.

Патологии

Причины многих заболеваний, к примеру, синдром Шерешевского-Тернера, Клайнфельтера, Дауна и прочих, долгое время оставались невыясненными. Но использование цитологического метода позволило обнаружить аномалии хромосом. Мужчины, страдающие синдромом Клайнфельтера, отличаются недоразвитостью гонад, умственной отсталостью, дегенерацией семенных канальцев, непропорциональностью конечностей и прочим. У женщин диагностируется болезнь Шерешевского-Тернера. Синдром проявляется в отсутствии менструаций и позднем половом созревании, недоразвитости гонад, небольшом росте, бесплодии и прочих признаках. В результате исследований было выявлено нерасхождение половых хромосом в процессе формирования родительских гамет. Дальнейший анализ показал, что следствием этого являются различные аномалии. Отмечается, в частности, полисомия. Например, мужчины могут иметь набор XX Y, XXX Y, ХХХХ Y, женщины же - XXX, ХХХХ. Существует особенность значения половых хромосом при детерминации человеческого пола при их нерасхождении. Так, в отличие от дрозофилы, она проявляется в том, что XX Y определяет исключительно мужской, а Х0 - женский пол. Вместе с этим увеличение количества хромосом Х при сочетании с одной Y только усиливает болезнь Клайнфельтера. Полисомия либо трисомия у женщин также является провоцирующим фактором для развития патологий, сходных с синдромом Шерешевского-Тернера.

В заключение

Патологии, спровоцированные нарушениями в нормальном количестве половых хромосом, обнаруживаются анализом хроматина. При нормальном наборе у мужчин он в клетках не обнаруживается. У здоровых женщин хроматин выявляется в виде 1 тельца. На фоне полисмии у женщин и мужчин число телец хроматина всегда меньше количества хромосом Х на единицу. Для каждой такой зиготы генетическая активность присутствует только у одного структурного элемента. Остальные же хромосомы Х в виде полового хроматина принимают гетеропикнотическое состояние. Причины данной закономерности сегодня выявлены не до конца. Тем не менее предполагается, что она обуславливается нивелированием активности генов в половых хромосомах гомо- и гетерогаметного пола. Кроме описанных выше, патологии могут возникать вследствие нерасхождения аутосом, а также благодаря разнообразным перестройкам типа делеций, транслокаций и прочих. С хромосомными аномалиями врожденного типа связано множество болезней. Именно поэтому цитогенетический метод имеет особое значение в их выявлении.

В настоящее время генетика весьма актуальна в научных сферах для исследования. Толчком для ее развития стало всем известное учение Чарльза Дарвина о дискретности наследственности, естественном отборе и мутационных изменениях вследствие передачи несущего генотипа. Начав свое развитие в начале прошлого века, генетика, как наука, достигла широких масштабов, при этом методы исследования на данный момент являются одними из основных направлений изучения, как человеческой природы, так и живой природы в целом.

Рассмотрим основополагающие методы исследования генетики, известные в настоящее время.

исследования генетики человека представляют собой анализирование и определение типовых структур генов при наследовании в родословных. Полученные результаты и сведения используют для предотвращения, профилактики и выявления вероятности возникновения изученного признака в потомстве - наследственные заболевания. Тип наследования может быть аутосомный (проявление признака возможно с одинаковой долей вероятности у лиц обоих полов) и сцепленный с хромосомным половым рядом носителя.

Аутосомный метод в свою очередь подразделяется на аутосомно- доминантное наследование (доминантный аллель может реализоваться и в гомозиготном и в гетерозиготном состоянии) и аутосомно-рецессивное наследование (рецессивный аллель может реализоваться только в гомозиготном состоянии). При этом виде наследования заболевание проявляется через несколько поколений.

Сцепленная с полом наследственность характеризуется локализацией соответственного гена в гомологических и негомологических участках Y- или X-хромосом. По генотипному фону, который локализован в половых хромосомах, определяют гетеро- или гомозиготную женщину, а вот мужчины, имеющие всего лишь один Х-хромосомный ряд, могут быть только гемизиготными. Например, гетерозиготная женщина может передать заболевание по наследству как сыну, так и дочерям.

исследования генетики обуславливается изучением наследственных заболеваний, передающимся в результате генных мутаций. Такие методы исследования генетики человека выявляют наследственные дефекты метаболизма посредством определения ферментов, углеводов и других продуктов обмена веществ, которые остаются в внеклеточной жидкости организма (кровь, пот, моча, слюна и т.д.).

Близнецовые методы исследования генетики человека выясняют наследственную обусловленность исследуемых признаков заболевания. (полноценный организм развивается из двух и более дробленных частей зиготы на ранней стадии ее развития) имеют идентичный генотип, что позволяет выявлять различия в результате внешнего влияния среды на фенотип человека. Разнояйцовые близнецы (оплодотворение двух и более яйцеклеток) имеют генотип родственных друг другу людей, что позволяет оценить средовые и наследственные факторы развития генотипного фона человека.

исследования генетики применяют при изучении морфологии хромосом и нормальности кариотипа, что позволяет при выявлении геномных и хромосомных мутаций диагностировать наследственные заболевания на хромосомном уровне, а также исследовать мутагенное действие химикатов, пестицидов, лекарств и т.д. Эта методика широко применяется при анализе и последующем выявлении наследственных аномалий организма еще до рождения ребенка. Пренатальная диагностика околоплодной жидкости ставит диагноз уже в первом триместре беременности, что делает возможным принятие решения о прерывании беременности.

Для изучения генетического аппарата человека ученые используют специальные методы.

Методы исследования генетики человека разнообразны. Рассмотрим некоторые из них. Для изучения генетики человека пользуются такими методами:

  • генеалогическим;
  • популяционным;
  • близнецовым;
  • цитогенетическим;
  • биохимическим;
  • дерматоглифичным;
  • методом генетики соматических клеток;
  • методом исследования патологии обмена веществ.

Генеалогический метод

При генеалогическом методе составляют и анализируют родословные. Они позволяют установить, как передаются различные заболевания. Родословные составлялись несколько веков назад для царских семей. Но для изучения генетики они применяются только с начала прошлого века. Пример - исследование того, как наследуется гемофилия в семье английской королевы Виктории. Родословная составляется чаще всего для больного человека или для носителя изучаемого признака. Того, для кого составляется родословная, называют пробандом, его родных братьев и сестер - сибсами. Генеалогический метод исследования родословной позволяет установить, по какому типу наследуется признак. Лучше применять метод родословных для многодетных семей. Он помогает заменить гибридологический метод, который широко применяется для животных и растений, но недопустим для людей.

Популяционный метод

Популяционный метод изучает частоту встречаемости генов в человеческих популяциях. Используя его, оценивают возможность рождения детей с определенными признаками. Также он дает возможность узнать, с какой частотой встречаются рецессивные гены у гетерозиготных людей и проследить распространение наследственных заболеваний.

Близнецовый метод

Методы исследования генетики человека используют и материалы, собранные в ходе наблюдений за близнецами. Для этого изучают однояйцевых близнецов, проживающих в разных условиях. Благодаря стопроцентному сходству генов у однояйцевых близнецов близнецовый метод помогает установить, как влияют факторы окружающей среды на генотип и психические свойства человека.

Цитогенетический метод

Цитогенетический метод исследования изучает строение хромосом, определяя их количество и форму, а также диагностирует наследственные болезни, которые возникают в результате изменения их числа и структуры хромосом. Для этого используется микроскоп. Для того чтобы хромосомы было легче распознавать, их окрашивают, используя специальные методы. Цитогенетический метод позволяет, например, выявить синдром Клайнфельтера. При этой болезни имеется лишняя Х-хромосома.

Биохимический метод

С помощью биохимического метода определяют местоположение и характер мутации в генах. Это помогает выявить детей с наследственными заболеваниями, такими как серповидная анемия, по аминокислотному составу гемоглобина.

Дерматоглифичный метод

Дерматоглифичный метод позволяет по рисунку линий на ладонях родителей определить возможность появления наследственной болезни у детей. Это связано с тем, что у людей с наследственными хромосомными патологиями кожный рисунок имеет своеобразные отличия.

Метод генетики соматических клеток

Эти методы исследования генетики занимаются изучением наследственности и изменчивости соматических (неполовых) клеток, компенсируя невозможность применить гибридологический метод. Для исследований размножают клетки в искусственных условиях и анализируют генетические процессы, происходящие в них. Так как наследственный материал, заключенный в соматических клетках, является полноценным, полученные результаты можно применить для целого организма.

Метод исследования патологии обмена веществ

Методы исследования генетики человека используют изучение патологии обмена веществ, чтобы определить людей, у которых есть соответствующие наследственные нарушения. Как только рождается ребенок, у него берут кровь из большого пальца ноги. Этот метод помогает выяснить, нет ли у новорожденного фенилкетонурии - наследственного заболевания, связанного с нарушением обмена аминокислот, приводящего к умственной отсталости. Благодаря ранней диагностике, если придерживаться специальной диеты, болезнь не проявляется.

Отличия генетики человека от общей генетики

Для изучения наследования признаков у человека используют те же методы исследования, что и для животных. Отличие лишь в том, что методы исследования генетики человека исключают гибридологический метод, который является основным в генетике животных и растений.

Наследственность человека трудно поддается изучению:

Примерно одинаковая продолжительность жизни исследователя (врача) и пациента, максимально может изучит 3-4 поколения в семье,

Поздно наступающая половая зрелость человека и малое число потомков,

Большое число хромосом и генов,

Отсутствие записанных родословных в семье,

Гибридологический метод применять нельзя.

Существует ряд методов, которые позволяют проследить наследование признаков. Это позволяет установить диагноз, бороться с болезнями, провести консультацию лицам, нуждающимся в ней.

Клинико- генеалогический

Биохимический

Цитогенетический

Близнецовый

Популяционно-статестический

Имунно-генетический

Близнецовый метод.

МZ (ОБ) однояйцевые.

1 яйцеклетка + 1 сперматозоид → зигота, которая далее на ранних стадиях делиться на 2 эмбриона.

Всегда одного пола (генетически эдентичны). Различия между ними зависят в основном от действия внешних факторов.

2 яйцеклетка + 2 сперматозоида = → 2 зиготы.

DZ (РБ). Они сходны между собой как 2 сестры или 2 брата, рождённые порознь. Могут быть и разнополые или однополые. Различия зависят от наследственности и от средовых факторов.

Метод позволяет разграничить роль наследственности и среды в разнообразии признаков человека.

Если возникновение признака (или его отсутствие) в значительной степени зависит от генетической конструкции тогда у ОБ совпадение наблюдается чаще.

Внутрипарное сходство близнецов (похожесть) называется конкорданность, у ОБ она > чем РБ.

(псориаз МЗ 61 % РБ 13%) . Шизофрения 69% (10%). Депрессия (психоз) 96% (19%).

90-100% оттенок кожи, форма носа, оттенок радужки, у ОБ

Группа крови, слюны, резусу у ОБ- 100%

81-90% дактилоскоп. Узору у ОБ.

Сущность метода: изучения внутрипарного сходства близнецов, при сравнении которых можно судить о влиянии среды и наследственности на развитие того или иного признака (воздействие хим. в-в, лекарств…).

Цитогенетический метод.

Это микроскопический анализ хромосом (кариотипа) позволяет выявить числовые и структурные изменения хромосом (перестройки, поломки и др..

Хромосомы изучают в делящихся клетках костного мозга, лимфоцитах крови, реже кожи, мышц.

Хромосомы можно изучать и будущего ребёнка (эмбриона): ворсины хориона, клетки плаценты, пуповинной крови, амниотической жидкости (околоплодных вод- метод амниоцентез).

Клетки отбирают, выращивают на питательной среде, добавляют колхитин. Он останавливает митоз на стадии метафазы. Микропрепараты обязательно окрашивают. Существует различные методики цитогенетической диагностики. Методом можно определять половой хроматин (тельце Барра)

Показания к методу:

У пробанда, его родителей или родственников при подозрении на хромосомную болезнь (уточнение диагноза)

При тяжёлых психических расстройствах

При первичной аменореи (отсутствие менструации) бесплодии

При спонтанных абортах, мёртворожденных

У детей с множественными пороками развития, не подходящими под какую либо болезнь.

При изучении мутагенного действия, каких либо факторов (лекарственные средства, наркотики, радиация…)

При проведении медико- генетического консультирования.

Метод приводит к более точной диагностики, к своевременному лечению и предупреждению рождения больного ребёнка.

Понравилась статья? Поделиться с друзьями: