Состояние. Что такое агрегатное состояние вещества

природных объектов и систем) - качественная и количественная характеристика множества их функциональных и интегративных реальных и потенциальных возможностей, множества их признаков, параметров в пространстве и времени (см. например, стационарное состояние).

Отличное определение

Неполное определение ↓

СОСТОЯНИЕ

совокупность основных параметров и характеристик какого-либо объекта, явления или процесса в определенный момент (или интервал) времени. Бытие этого объекта, явления или процесса выступает как развертывание, последовательная смена его состояний. Понятие состояния имеет исключительно широкое применение. Так, говорят о газообразном состоянии вещества, о состоянии движения тела, о болезненном состоянии человека, о состоянии морали в обществе и т. п.

Особенно существенно понятие для характеристики динамических систем. Оно предстает как реализация в некоторый момент времени параметров (свойств), определяющих поведение и развитие системы. Законы динамики систем и есть законы взаимосвязи состояний во времени. Связь состояний принято характеризовать как выражение принципа причинности: некоторое исходное состояние системы в сочетании с внешними воздействиями, которые испытывает система в рассматриваемый промежуток времени, есть причина его последующих состояний. Понятие состояния является центральным при изучении изменений, движения и развития объектов и систем. Решение конкретных исследовательских задач основывается, с одной стороны, на знании и применении соответствующих законов, а с другой, - на задании начальных условий. «Мир очень сложен, - отмечал Е. Вигнер, - и человеческий разум явно не в состоянии полностью постичь его. Именно поэтому человек придумал искусственный прием - в сложной природе мира винить то, что принято называть случайным, - и т. о. смог выделить область, которую можно описать с помощью простых закономерностей. Сложности получили название начальных условий, а то, что абстрагировано от случайного, - законов природы. Каким бы искусственным ни казалось подобное разбиение мира при самом беспристрастном подходе и даже вопреки тому, что возможность его осуществления имеет свои пределы, лежащая в основе такого разбиения абстракция принадлежит к числу наиболее плодотворных идей, выдвинутых человеческим разумом. Именно она позволила создать естественные науки» (Вигнер Е. Этюды о симметрии. М., 1971, с. 9). Задание начальных условий и есть по существу задание некоторого исходного состояния исследуемой системы, что необходимо для ее дальнейшего анализа.

При определении начального (исходного) состояния нужно учитывать законы взаимосвязей параметров систем, наличие которых приводит к тому, что для описания исходного состояния необходимо задать значения только независимых параметров. Следует, однако, учитывать, что между параметрами систем существуют и субординационные, иерархические зависимости. Для описания состояний особенно сложных, многоуровневых систем необходимо задать и структуру, структурные характеристики. Так, в статистических системах состояния определяются не путем задания характеристик отдельных элементов или индивидуальных состояний каждого элемента, а на языке вероятностных распределений - через характеристику вида, типа распределений. В сложных системах состояния определяются на основе более общих характеристик, относящихся к более высоким уровням организации систем. Тем самым представления о состояниях соотносятся с анализом глубинных свойств исследуемых систем.

Понятие состояния является одним из ключевых для характеристики нелинейных систем и взаимодействий. Свойства нелинейных систем зависят от их состояния. Их важнейшая особенность - нарушение в них принципа суперпозиции: результат одного из воздействий в присутствии другого оказывается не таким, каким он был бы, если бы это другое воздействие отсутствовало. Иначе говоря, аддитивность причин приводит к аддитивности следствий. В нелинейных же системах общий результат ряда воздействий на систему (ее итоговое состояние) определяется не простым суммированием наличных воздействий, но и их взаимовлиянием. Нелинейными являются практически все физические системы; еще более это характерно для химических, биологических и социальных систем, которым присущи качественные преобразования. Поведение систем с возрастанием их сложности все сильнее определяется их внутренней динамикой, которая порождает процессы самоорганизации. Состояния систем изменяются под влиянием не только внешних воздействий, но и по внутренним основаниям. Акцент на этих внутренних основаниях находит выражение в том, что первостепенное внимание начинает уделяться таким понятиям и представлениям как неустойчивость, неравновесность, необратимость, самоусиление процессов, бифуркации, многовариантность путей изменения и развития.

Отличное определение

Неполное определение ↓

Переход из одного состояния в другое. Улучшение, изменение, модификация, преображение.

Трансформация, о которой здесь идет речь, касается сущности, бытия человека. Вот несколько примеров трансформации: человек ярко выраженного собственнического склада и пленник собственных страхов становится свободной личностью, трансформировав свои понятия и убеждения относительно того, что значит жить и давать жить другим. Человек, который отвергал себя и видел в себе только недостатки, стал любить себя, когда лучше узнал и принял свою сущность. Человек, который считал себя жертвой, то есть терпел свою жизнь, трансформировал свои внутренние установки и постиг универсальные законы, благодаря чему стал хозяином своей жизни и научился строить собственное счастье по своим потребностям.

Подобные необычайные трансформации - не чудо, они доступны всякому, кто по-настоящему готов приложить необходимые усилия, чтобы реализовать свое право жить счастливой жизнью. Почему некоторым людям так трудно трансформировать себя? Прежде всего потому, что слово «трансформация» часто означает «неизвестное», а все неизвестное грозит неустойчивостью, опасностью.

Известно, что обычно люди предпочитают стабильность, даже когда их жизнь в целом тяжела, а иногда и невыносима. Им легче оставаться в безрадостном, но устойчивом состоянии, чем браться за рискованную трансформацию, которая неизвестно чем закончится. Вот почему нередко бывает так, что человеку нужно пережить тяжелую ситуацию, кризис, прежде чем он убедится, что пора двигаться вперед, пора изменить самого себя. Впоследствии, несмотря на определенные трудности, пережитые в период трансформации, редко кто говорит, что хотел бы вернуться назад. Можно сказать, что для человека естественно проходить различные этапы трансформации последовательно.

Трансформация - не разрушение. Современная обстановка на нашей планете {ГАЙЯ", может напугать некоторых людей, поскольку все меняется с такой скоростью, что у ни> возникает впечатление крушения всего, что они так долго строили; все кажется им неустойчивым, недолговечным. Это не более чем страх, иллюзия эго. Действительность совсем иная. Стоит лишь понаблюдать за природой. Великолепный пример трансформации являет нам бабочка. Она полностью меняет свой внешний вид для того, чтобы лететь к новым горизонтам и пережить новый опыт. Мы, конечно, не бабочки, но природа показывает нам, что трансформация составляет неотъемлемую часть нашей жизни и является переходом к чему-то новому - иному состоянию.

Поэтому трансформация совершенно естественна, даже необходима для продолжена нашей духовной эволюции. Достаточно лишь присмотреться, сколько трансформации произошло за прошедшие годы вокруг нас. У некоторых людей бывает ощущение, что ohi-

прожили больше, чем одну жизнь, -столько замечательных трансформаций произошло за время их существования.

Есть замечательный способ осуществления надежной и благотворной трансформации, который не требует контроля и не причиняет страданий: дай себе право быть таким, какой ты есть на самом деле, не суди и не критикуй себя, прояви к себе сострадание.

Когда кто-то,4^апример, не принимает себя, поскольку переживает гнев, зависимость, страх или какое-то верование, или если отвергает себя из-за того, что его физическое тело не соответствует его представлениям, такая установка неприятия делает его пленником собственного поведения. Его ЭГО считает, что достичь перемен в чем бы то ни было можно только при условии, что отвергнешь и отбросишь все нежелательное. Эго не знает, что, чем упорнее мы что-то отвергаем, тем с большей силой возвращается отвергнутое. Этим объясняется тот факт, что человек, не принимающий свое тело (например, находящий его чрезмерно толстым), не в состоянии трансформировать его по своему желанию; а тот, кто не принимает собственное поведение, считая его недопустимым, против своей воли продолжает вести себя все так же.

Поэтому, прежде чем стремиться к трансформации, в первую очередь необходимо принять себя таким, какой ты есть. То есть дать право своим поступкам и ситуациям занимать их законное место -ты ведь сам их создал, пусть и бессознательно. Каждая ситуация приносит тебе что-то важное для твоего развития. Благодари за ПОЛЕЗНОСТЬ то, что тебе кажется нежелательным: так ты откроешь себе путь к трансформации, поскольку опыт того, чего ты не желаешь и что влечет неприятные для тебя последствия, поможет тебе определить, чего ты хочешь.

Между тем, и об этом не следует забывать, твой БОГ ВНУТРЕННИЙ точно знает, в чем твоя потребность. Может случиться, что результатом твоей трансформации окажется нечто противоположное тому, чего ты хотел. Ты должен проявить ДОВЕРИЕ и ОТПУСТИТЬ СИТУАЦИЮ. В результате чудодейственного эффекта безусловного ПРИЯТИЯ трансформация происходит постепенно. Таким образом, давая себе право иметь пределы, слабости и страхи в различных сферах своей жизни, ты можешь начать процесс истинной трансформации. Предпочтительно тем временем предпринимать конкретные действия на уровне наших внутренних установок и форм поведения, чтобы направить этот процесс в желаемую сторону. Необходимо быть бдительным и иметь искреннее желание трансформировать себя, чтобы радикально улучшить качество своей жизни.

ТРАУР

Потеря, смерть близкого человека. Боль, печаль, вызванная чьей-то смертью.

Период траура необходим для адаптации к уходу, исчезновению близкого существа или материального блага. Когда идет речь о трауре, мы обычно имеем в виду чью-то СМЕРТЬ или ПОТЕРЮ. Если это кто-то близкий и очень любимый, то вполне нормальной и человеческой является наша болезненная реакция, внутреннее эмоциональное опустошение. Те, кому слишком трудно пережить этот период, не знают, что у них есть необходимые

ТРЕБОВАНИЕ 359

силы, чтобы встретить горе с ясной душой. Тем более им нужно время, в течение которого жизнь заполнит возникшую пустоту.

Если период траура и сожалений об усопшем затягивается, независимо от его возраста, в этом нет ничего хорошего. Умирание - часть жизненного цикла человеческих существ, и мы должны принять, что смерть человека, даже очень юного, означает, что он прожил то, что ему надлежало прожить в этом теле и в этом окружении, и что это составляет часть его ПЛАНА ЖИЗНИ. Если БОЛЬ не утихает, это следует рассматривать как послание о том, что ты слишком привязан к земным благам и людям. Тебе необходимо научиться ОТСТРАНЕНИЮ.

Кроме того, слово «траур» употребляется в фигуральном смысле для обозначения периода отказа, отречения от чего бы то ни было -имущества, идей, деятельности и т. д. Фактически человек ПРИНИМАЕТ факт окончательного расставания, переворачивает страницу жизни и устремляется к чему-то другому. В общем, осознает, что пришло время оставить одно и взяться за другое и что жизнь продолжается. В любом случае, главным здесь является момент ПРИЯТИЯ. После этого легче НАСТРАИВАТЬСЯ, ПРИСПОСАБЛИВАТЬСЯ к новой фазе жизни.

Смерть человека является обычной иллюзией. Такое предположение озвучил Роберт Ланца из Медицинской школы Университета Уэйк-Форест.

По его мнению, столь пугающий людей момент смерти - это всего лишь галлюцинация, которая является репрезентантом человеческой совести. Ланца уточняет, что смерть – это просто момент перехода человека на следующий, пока не изученный уровень существования. Люди слишком привязываются к своему телу и считают прекращение функционирования биооболочки концом существования, но Ланца считает, что сознание не погибает вместе с организмом. Оно просто трансформируется в другую форму бытия и проявляется в других условиях.

Точку зрения Ланцы разделяют многие физики, которые уверены в многослойности Вселенной. По их убеждениям, человек живет в каждой временной эпохе, как в прошлой, так и в будущей (общего толкования среди ученых пока нет). Смерть – это просто переход из одного состояния в другое и попытка это както представить или осознать невозможна для нашего текущего состояния. Количество жизней может быть бесконечным (или бесконечна сама жизнь).

Роберт Поль Ланца - американский врач, ученый, главный научный сотрудник компании «Ocata Therapeutics», прежнее название которой «Advanced Cell Technology» и адъюнкт-профессор в Институте регенеративной медицины (Institute for Regenerative Medicine) Медицинской школы Университета Вэйк Форест (Wake Forest University School of Medicine).

Р. П. Ланца был членом научного коллектива, который впервые в мире клонировал эмбрионы человека на ранней стадии, а также впервые успешно создал стволовые клетки из зрелых клеток, использовав соматический перенос ядра соматической клетки («терапевтическое клонирование»).

Р. П. Ланца продемонстрировал, что методы, которые используются в преимплантационной генетической диагностике, можно использовать для создания эмбриональных стволовых клеток без умерщвления эмбриона.

В 2001 г. он был первым, кто клонировал гаура (один из угрожаемых видов животных), а в 2003 г. он также клонировал бантенга (еще один угрожаемый вид) из замороженных клеток кожи животного, которое умерло в зоопарке Сан-Диего примерно за четверть века до этого.

Р. П. Ланца с коллегами впервые продемонстрировал, что пересадку ядра можно использовать для остановки процесса старения и для создания иммунологически совместимых тканей, включая создание первого органа, выращенного в лаборатории из клональных клеток.

Р. П. Ланца показал возможность создания функциональных, способных переносить кислород красных кровяных клеток из эмбриональных стволовых клеток при условиях, которые подходят для воссоздания в больнице. Потенциально, такие клетки крови могут быть источником «универсальной» крови.

Группа, работающая под руководством Р. П. Ланцы, открыла способ, позволяющий получать функциональные гемангиобласты (популяция клеток «скорой помощи») из эмбриональных стволовых клеток человека. У животных эти клетки быстро восстанавливали повреждённые сосуды, вдвое снижая уровень смертности после инфаркта и налаживая кровоток к ишемизированной конечности, которую в других случаях следовало ампутировать.

Недавно Р. П. Ланца и группа исследователей Гарвардского университета, возглавляемая Кванг-Су Кимом (Kwang-Soo Kim), сообщили о создании безопасной технологии, которая позволяет получать индуцированные плюрипотентные стволовые клетки (iPS).

iPS человека были получены из клеток кожи с помощью прямой доставки белков. Таким образом, опасные риски, связанные с генетическими и химическими манипуляциями, были исключены. Эта новая технология дает возможность получить потенциально безопасный источник пациент-специфических стволовых клеток, которые можно использовать для введения в клиническую практику. Р. П. Ланца и компания «Advanced Cell Technology» планируют начать процесс официального одобрения исследований, которые, по мнению экспертов, могут стать первыми исследованиями на человеке, в которых задействованы индуцированные плюрипотентные стволовые клетки (iPS), созданные путём возвращения зрелых клеток в состояние, подобное эмбриональному.

Группа исследователей, работающая под руководством Р. П. Ланцы в компании «Advanced Cell Technology», смогла вырастить клетки сетчатки глаза из стволовых клеток. Применение этой технологии дает возможность излечить некоторые формы слепоты, такие как макулярная дегенерация и болезнь Штаргардта. Эти болезни глаз в настоящее время являются неизлечимыми и приводят к слепоте у подростков, а также у людей молодого и пожилого возраста.

Компания «Advanced Cell Technology» получила разрешение Управления по контролю пищевых продуктов и лекарственных средств (США) на проведение исследований на человеке, в которых эмбриональные стволовые клетки используются для лечения дегенеративных заболеваний глаз. При таком лечении заболеваний глаз стволовые клетки используются для получения тех клеток сетчатки, которые поддерживают фоторецепторные клетки, дающие человеку возможность видеть. Поддерживающие клетки являются частью пигментного эпителия сетчатки (retinal pigment epithelium, RPE) и, как правило, именно эти клетки первыми отмирают при возрастной макулярной дегенерации и других болезнях глаз, что, в свою очередь, приводит к потере зрения.

В сентябре 2011 г. компания Р. П. Ланцы получила разрешение Управления по контролю лекарственных средств и изделий медицинского назначения (Великобритания) на проведение первых в Европе клинических испытаний с использованием эмбриональных стволовых клеток человека. Хирурги глазной клиники Мурфилдса (Moorfields Eye Hospital), расположенной в Лондоне, будут вводить здоровые клетки сетчатки в глаза пациентов с макулярной дистрофией Штаргардта. Таким образом они надеются замедлить данную болезнь, остановить её или даже устранить её негативные последствия. Первый пациент прошел курс лечения эмбриональными стволовыми клетками в начале 2012 г. После лечения этот пациент отметил улучшение зрения. По мнению газеты «Гардиан» (The Guardian), этот результат «является величайшим научным достижением».

В октябре 2014 г., Р. П. Ланца с коллегами опубликовали дополнительную статью в журнале «The Lancet», в которой впервые показана долгосрочная безопасность и возможная биологическая активность потомков плюрипотентных стволовых клеток в организме человека при любых болезнях. «Не меньше двадцати лет ученые мечтали об использовании эмбриональных стволовых клеток человека для лечения болезней», - сказал Гаутам Найк, репортер по вопросам науки из журнала «The Wall Street Journal», - «и этот день наконец настал… С помощью эмбриональных стволовых клеток ученые успешно вылечили пациентов с серьезными потерями зрения». Клетки пигментного эпителия сетчатки, полученные из эмбриональных стволовых клеток, были введены в глаза 18 пациентов с болезнью Штаргардта или сухой формой возрастной макулярной дегенерации. За пациентами наблюдали более трех лет, половина пациентов смогли видеть на три строки больше в таблицах для исследования остроты зрения, что существенно улучшило их каждодневную жизнь.

В 2007 г. в журнале «The American Scholar» вышла статья Р. П. Ланцы «Новая теория Вселенной» («A New Theory of the Universe»). В статье дано представление Р. П. Ланцы о биоцентрической вселенной, согласно которому биологию следует поместить над другими науками. Книга Р. П. Ланцы «Биоцентризм, или Почему жизнь и сознание являются ключами к пониманию Вселенной», издана в соавторстве с Б. Бернамом в 2009 г. Данная книга вызвала неоднозначную реакцию читателей.

Биоцентрическая вселенная - это концепция, предложенная в 2007 году Робертом Ланца, который видит биологию как центральную науку во Вселенной и ключ к пониманию других наук. Биоцентризм утверждает, что биологическая жизнь создаёт окружающую нас реальность, время и вселенную - то есть жизнь создаёт вселенную, а не наоборот. Он утверждает, что в настоящее время теории физического мира не работают и никогда не будут работать, до тех пор, пока они не будут отталкиваться, как от исходной точки - от жизни во вселенной и её разумного начала.

В настоящее время физика считается основой для изучения Вселенной, а химия фундаментом для исследования жизни, однако, биоцентризм утверждает, что биология - это фундамент для остальных наук и претендует на звание так называемой «теории всего».

Роберт Ланца считает, что будущие эксперименты, в частности, по крупномасштабной квантовой суперпозиции, подтвердят или поставят под сомнение его теорию.

Наиболее распространено знание о трех агрегатных состояниях: жидком, твердом, газообразном, иногда вспоминают о плазменном, реже жидкокристаллическом. Последнее время в интернете распространился перечень 17 фаз вещества, взятый из известной () Стивена Фрая. Поэтому мы расскажем о них подробнее, т.к. о материи следует знать немного больше хотя бы для того, чтобы лучше понимать процессы, происходящие во Вселенной.

Приведённый ниже список агрегатных состояний вещества возрастает от самых холодных состояний к самым горячим и т.о. может быть продолжен. Одновременно следует понимать, что от газообразного состояния (№11), самого «разжатого», в обе стороны списка степень сжатия вещества и его давление (с некоторыми оговорками для таких неизученных гипотетических состояний, как квантовое, лучевое или слабо симметричное) возрастают.После текста приведен наглядный график фазовых переходов материи.

1. Квантовое — агрегатное состояние вещества, достигаемое при понижении температуры до абсолютного нуля, в результате чего исчезают внутренние связи и материя рассыпается на свободные кварки.

2. Конденсат Бозе-Эйнштейна — агрегатное состояние материи, основу которой составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли градуса выше абсолютного нуля). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне. Конденсат Бозе-Эйнштейна (который зачастую называют «бозе-конденсат», или попросту «бэк») возникает, когда вы охлаждаете тот или иной химический элемент до чрезвычайно низких температур (как правило, до температуры чуть выше абсолютного нуля, минус 273 градуса по Цельсию, — теоретическая температура, при которой все перестает двигаться).
Вот тут с веществом начинают происходить совершенно странные вещи. Процессы, обычно наблюдаемые лишь на уровне атомов, теперь протекают в масштабах, достаточно крупных для наблюдения невооруженным глазом. Например, если поместить «бэк» в лабораторный стакан и обеспечить нужный температурный режим, вещество начнет ползти вверх по стенке и в конце концов само по себе выберется наружу.
Судя по всему, здесь мы имеем дело с тщетной попыткой вещества понизить собственную энергию (которая и без того находится на самом низком из всех возможных уровней).
Замедление атомов с использованием охлаждающей аппаратуры позволяет получить сингулярное квантовое состояние, известное как конденсат Бозе, или Бозе — Эйнштейна. Это явление было предсказано в 1925 году А. Эйнштейном, как результат обобщения работы Ш. Бозе, где строилась статистическая механика для частиц, начиная от безмассовых фотоно до обладающих массой атомов (рукопись Эйнштейна, считавшаяся утерянной, была обнаружена в библиотеке Лейденского университета в 2005 году). Результатом усилий Бозе и Эйнштейна стала концепция Бозе газа, подчиняющегося статистике Бозе — Эйнштейна, которая описывает статистическое распределение тождественных частиц с целым спином, называемых бозонами. Бозоны, которыми являются, например, и отдельные элементарные частицы — фотоны, и целые атомы, могут находиться друг с другом в одинаковых квантовых состояниях. Эйнштейн предположил, что охлаждение атомов — бозонов до очень низких температур заставит их перейти (или, по-другому, сконденсироваться) в наинизшее возможное квантовое состояние. Результатом такой конденсации станет возникновение новой формы вещества.
Этот переход возникает ниже критической температуры, которая для однородного трёхмерного газа, состоящего из невзаимодействующих частиц без каких-либо внутренних степеней свободы.

3. Фермионный конденсат — агрегатное состояние вещества, схожее с бэком, но отличающееся по строению. При приближении к абсолютному нулю атомы ведут себя по-разному в зависимости от величины собственного момента количества движения (спина). У бозонов спины имеют целочисленные значения, а у фермионов - кратные 1/2 (1/2, 3/2, 5/2). Фермионы подчиняются принципу запрета Паули, согласно которому два фермиона не могут иметь одно и то же квантовое состояние. Для бозонов такого запрета нет, и поэтому у них есть возможность существовать в одном квантовом состоянии и образовывать тем самым так называмый конденсат Бозе-Эйнштейна. Процесс образования этого конденсата отвечает за переход в сверхпроводящее состояние.
Электроны имеют спин 1/2 и, следовательно, относятся к фермионам. Они объединяются в пары (так называемые пары Купера), которые затем образуют Бозе-конденсат.
Американские ученые предприняли попытку получить своего рода молекулы из атомов-фермионов при глубоком охлаждении. Отличие от настоящих молекул заключалось в том, что между атомами не было химической связи - просто они двигались вместе, коррелированным образом. Связь между атомами оказалась даже прочнее, чем между электронами в куперовских парах. У образованных пар фермионов суммарный спин уже не кратен 1/2, следовательно, они уже ведут себя как бозоны и могут образовывать бозе-конденсат с единым квантовым состоянием. В ходе эксперимента охлаждали газ из атомов калия-40 до 300 нанокельвинов, при этом газ заключался в так называемую оптическую ловушку. Затем наложили внешнее магнитное поле, с помощью которого удалось изменить природу взаимодействий между атомами - вместо сильного отталкивания стало наблюдаться сильное притяжение. При анализе влияния магнитного поля удалось найти такое его значение, при котором атомы стали вести себя, как куперовские пары электронов. На следующем этапе эксперимента ученые предполагают получить эффекты сверхпроводимости для фермионного конденсата.

4. Сверхтекучее вещество — состояние, при котором у вещества фактически отсутствует вязкость, а при течении он не испытывает трения с твёрдой поверхностью. Следствием этого является, например, такой интересный эффект, как полное самопроизвольное «выползание» сверхтекучего гелия из сосуда по его стенкам против силы тяжести. Нарушения закона сохранения энергии здесь, конечно же, нет. В отсутствие сил трения на гелий действуют только силы тяжести, силы межатомного взаимодействия между гелием и стенками сосуда и между атомами гелия. Так вот, силы межатомного взаимодействия превышают все остальные силы вместе взятые. В результате гелий стремится растечься как можно сильнее по всем возможным поверхностям, поэтому и «путешествует» по стенкам сосуда. В 1938 году советский учёный Пётр Капица доказал, что гелий может существовать в сверхтекучем состоянии.
Стоит отметить, что многие из необычных свойств гелия известны уже довольно давно. Однако и в последние годы этот химический элемент «балует» нас интересными и неожиданными эффектами. Так, в 2004 году Мозес Чань и Эун-Сьонг Ким из Университета Пенсильвании заинтриговали научный мир заявлением о том, что им удалось получить совершенно новое состояние гелия — сверхтекучее твёрдое вещество. В этом состоянии одни атомы гелия в кристаллической решётке могут обтекать другие, и гелий таким образом может течь сам через себя. Эффект «сверхтвёрдости» теоретически был предсказан ещё в 1969 году. И вот в 2004 году — как будто бы и экспериментальное подтверждение. Однако более поздние и весьма любопытные эксперименты показали, что не всё так просто, и, возможно, такая интерпретация явления, которое до этого принималось за сверхтекучесть твёрдого гелия, неверна.
Эксперимент учёных под руководством Хэмфри Мариса из Университета Брауна в США был прост и изящен. Учёные помещали перевёрнутую вверх дном пробирку в замкнутый резервуар с жидким гелием. Часть гелия в пробирке и в резервуаре они замораживали таким образом, чтобы граница между жидким и твёрдым внутри пробирки была выше, чем в резервуаре. Иными словами, в верхней части пробирки был жидкий гелий, в нижней — твёрдый, он плавно переходил в твёрдую фазу резервуара, над которой был налито немного жидкого гелия — ниже, чем уровень жидкости в пробирке. Если бы жидкий гелий стал просачиваться через твёрдый, то разница уровней уменьшилась бы, и тогда можно говорить о твёрдом сверхтекучем гелии. И в принципе, в трёх из 13 экспериментов разница уровней действительно уменьшалась.

5. Сверхтвёрдое вещество — агрегатное состояние при котором материя прозрачна и может "течь", как жидкость, но фактически она лишена вязкости. Такие жидкости известны много лет, их называют суперфлюидами. Дело в том, что если супержидкость размешать, она будет циркулировать чуть ли не вечно, тогда как нормальная жидкость в конечном счёте успокоится. Первые два суперфлюида были созданы исследователями с использованием гелия-4 и гелия-3. Они были охлаждены почти до абсолютного нуля — до минус 273 градусов Цельсия. А из гелия-4 американским учёным удалось получить сверхтвёрдое тело. Замороженный гелий они сжали давлением более чем в 60 раз, а затем заполненный веществом стакан установили на вращающийся диск. При температуре 0,175 градусов Цельсия диск внезапно начал вращаться свободнее, что, по мнению учёных, свидетельствует о том, что гелий стал супертелом.

6. Твёрдое — агрегатное состояние вещества, отличающееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания вокруг положений равновесия. Устойчивым состоянием твердых тел является кристаллическое. Различают твердые тела с ионной, ковалентной, металлической и др. типами связи между атомами, что обусловливает разнообразие их физических свойств. Электрические и некоторые др. свойства твердых тел в основном определяются характером движения внешних электронов его атомов. По электрическим свойствам твердые тела делятся на диэлектрики, полупроводники и металлы, по магнитным — на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой. Исследования свойств твердых тел объединились в большую область — физику твердого тела, развитие которой стимулируется потребностями техники.

7. Аморфное твёрдое — конденсированное агрегатное состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В аморфных твердых телах атомы колеблются около хаотически расположенных точек. В отличие от кристаллического состояния переход из твердого аморфного в жидкое происходит постепенно. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. д.

8. Жидкокристаллическое — это специфическое агрегатное со-стояние вещества, в котором оно проявляет одновре-менно свойства кристалла и жидкости. Сразу надо огово-риться, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Однако, некоторые органические вещества, обладающие сложными молеку-лами, могут образовы-вать специфическое агрегатное состояние — жидкокристалли-ческое. Это состояние осуществляется при плавлении кристаллов некоторых веществ. При их плавлении обра-зуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость.
Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жид-костью, он обладает свойством, характерным для кри-сталлов. Это - упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не та-кое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное про-странственное упорядочение молекул, образующих жид-кий кристалл, проявляется в том, что в жидких кристал-лах нет полного порядка в пространственном располо-жении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кри-сталлической решетки. Поэтому жидкие кристаллы, по-добно обычным жидкостям, обладают свойством текуче-сти.
Обязательным свойством жидких кристаллов, сбли-жающим их с обычными кристаллами, является наличие порядка пространственной ориентации молекул. Такой порядок в ориентации может проявляться, например, в том, что все длинные оси молекул в жидкокристалличе-ском образце ориентированы одинаково. Эти молекулы должны обладать вытянутой формой. Кроме простейше-го названного упорядочения осей молекул, в жидком кристалле может осуществляться более сложный ориентационный порядок молекул.
В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические.
Исследования по физике жидких кристаллов и их при-менениям в настоящее время ведутся широким фрон-том во всех наиболее развитых странах мира. Отечествен-ные исследования сосредоточены как в академических, так и отраслевых научно-исследовательских учреждени-ях и имеют давние традиции. Широкую известность и признание получили выполненные еще в тридцатые годы в Ленинграде работы В.К. Фредерикса к В.Н. Цветкова. В последние годы бурного изучения жидких кристаллов отечественные исследователи также вносят весомый вклад в развитие учения о жидких кристаллах в целом и, в частности, об оптике жидких кристаллов. Так, работы И.Г. Чистякова, А.П. Капустина, С.А. Бразовского, С.А. Пикина, Л.М. Блинова и многих других советских иссле-дователей широко известны научной общественности и служат фундаментом ряда эффективных технических приложений жидких кристаллов.
Существование жидких кристаллов было установлено очень давно, а именно в 1888 году, то есть почти столетие назад. Хотя учёные и до 1888 года сталкивались с данным состоянием вещества, но официально его открыли позже.
Первым, кто обнаружил жидкие кристаллы, был авст-рийский ученый-ботаник Рейнитцер. Исследуя новое син-тезированное им вещество холестерилбензоат, он обна-ружил, что при температуре 145°С кристаллы этого ве-щества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начина-ет вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обнаруживал в мутной фазе. Рассматри-вая эту фазу под поляризационным микроскопом, Рей-нитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е скорость света е этой фазе, зависит от поляризации.

9. Жидкое — агрегатное состояние вещества, сочетающее в себе черты твердого состояния (сохранение объема, определенная прочность на разрыв) и газообразного (изменчивость формы). Для жидкости характерны ближний порядок в расположении частиц (молекул, атомов) и малое различие в кинетической энергии теплового движения молекул и их потенциальной энергии взаимодействия. Тепловое движение молекул жидкости состоит из колебаний около положений равновесия и сравнительно редких перескоков из одного равновесного положения в другое, с этим связана текучесть жидкости.

10. Сверхкритический флюид (СКФ) — агрегатное состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки является сверхкритическим флюидом. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, и низкой вязкостью, как и газы. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определенными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода.
Одно из наиболее важных свойств сверхкритического состояния - это способность к растворению веществ. Изменяя температуру или давление флюида можно менять его свойства в широком диапазоне. Так, можно получить флюид, по свойствам близкий либо к жидкости, либо к газу. Так, растворяющая способность флюида увеличивается с увеличением плотности (при постоянной температуре). Поскольку плотность возрастает при увеличении давления, то меняя давление можно влиять на растворяющую способность флюида (при постоянной температуре). В случае с температурой завистимость свойств флюида несколько более сложная - при постоянной плотности растворяющая способность флюида также возрастает, однако вблизи критической точки незначительное увеличение температуры может привести к резкому падению плотности, и, соответственно, растворяющей способности. Сверхкритические флюиды неограниченно смешиваются друг с другом, поэтому при достижении критической точки смеси система всегда будет однофазной. Приблизительная критическая температура бинарной смеси может быть рассчитана как среднее арифмитическое от критических параметров веществ Tc(mix) = (мольная доля A) x TcA + (мольная доля B) x TcB.

11. Газообразное — (франц. gaz, от греч. chaos — хаос), агрегатное состояние вещества, в котором кинетическая энергия теплового движения его частиц (молекул, атомов, ионов) значительно превосходит потенциальную энергию взаимодействий между ними, в связи с чем частицы движутся свободно, равномерно заполняя в отсутствие внешних полей весь предоставленный им объем.

12. Плазма — (от греч. plasma — вылепленное, оформленное), состояние вещества, представляющее из себя ионизованный газ, в котором концентрации положительных и отрицательных зарядов равны (квазинейтральность). В состоянии плазмы находится подавляющая часть вещества Вселенной: звезды, галактические туманности и межзвездная среда. Около Земли плазма существует в виде солнечного ветра, магнитосферы и ионосферы. Высокотемпературная плазма (Т ~ 106 — 108К) из смеси дейтерия и трития исследуется с целью осуществления управляемого термоядерного синтеза. Низкотемпературная плазма (Т Ј 105К) используется в различных газоразрядных приборах (газовых лазерах, ионных приборах, МГД-генераторах, плазмотронах, плазменных двигателях и т. д.), а также в технике (см. Плазменная металлургия, Плазменное бурение, Плазменная технология).

13. Вырожденное вещество — является промежуточной стадией между плазмой и нейтрониумом. Оно наблюдается в белых карликах, играет важную роль в эволюции звезд. Когда атомы находятся в условиях чрезвычайно высоких температур и давлений, они теряют свои электроны (они переходят в электронный газ). Другими словами, они полностью ионизованы (плазма). Давление такого газа (плазмы) определяется давлением электронов. Если плотность очень высока, все частицы вынуждены приближаться к друг другу. Электроны могут находится в состояниях с определенными энергиями, причем два электрона не могут иметь одинаковую энергию (если только их спины не противоположны). Таким образом, в плотном газе все нижние уровни энергии оказываются заполненными электронами. Такой газ называется вырожденным. В этом состоянии электроны проявляют вырожденное электронное давление, которое противодействует силам гравитации.

14. Нейтрониум — агрегатное состояние, в которое вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом не должна быть слишком высока (в энергетическом эквиваленте не более сотни МэВ).
При сильном повышении температуры (сотни МэВ и выше) в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов.

15. Кварк-глюонная плазма (хромоплазма) — агрегатное состояние вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме.
Обычно вещество в адронах находится в так называемом бесцветном («белом») состоянии. То есть, кварки различных цветов компенсируют друг друга. Аналогичное состояние есть и у обычного вещества — когда все атомы электрически нейтральны, то есть,
положительные заряды в них компенсированы отрицательными. При высоких температурах может происходить ионизация атомов, при этом заряды разделяются, и вещество становится, как говорят, «квазинейтральным». То есть, нейтральным остаётся всё облако вещества в целом, а отдельные его частицы нейтральными быть перестают. Точно так же, по-видимому, может происходить и с адронным веществом — при очень высоких энергиях, цвет выходит на свободу и делает вещество «квазибесцветным».
Предположительно, вещество Вселенной находилось в состоянии кварк-глюонной плазмы в первые мгновения после Большого Взрыва. Сейчас кварк-глюонная плазма может на короткое время образовываться при соударениях частиц очень высоких энергий.
Кварк-глюонная плазма была получена экспериментально на ускорителе RHIC Брукхейвенской национальной лаборатории в 2005 году. Максимальная температура плазмы в 4 триллиона градусов Цельсия была получена там же в феврале 2010 года.

16. Странное вещество — агрегатное состояние, при котором материя сжимается до предельных значений плотности, оно может существовать в виде "кваркового супа". Кубический сантиметр вещества в этом состоянии будет весить миллиарды тонн; к тому же он будет превращать любое нормальное вещество, с которым соприкоснётся, в ту же "странную" форму с выбросом значительного количества энергии.
Энергия, которая может выделиться при превращении вещества ядра звезды в "странное вещество", приведёт к сверхмощному взрыву "кварковой новой", - и, по мнению Лихи и Уйеда, именно его астрономы в сентябре 2006 года и наблюдали.
Процесс образования этого вещества начался с обычной сверхновой, в которую обратилась массивная звезда. В результате первого взрыва образовалась нейтронная звезда. Но, по мнению Лихи и Уйеда, просуществовала она очень недолго, - по мере того, как её вращение казалось затормозилось её собственным магнитным полем, она начала сжиматься ещё сильнее, с образованием сгустка "странного вещества", что привело к ещё более мощному, нежели при обычном взрыве сверхновой, выбросу энергии - и внешних слоёв вещества бывшей нейтронной звезды, разлетавшихся в окружающее пространство со скоростью, близкой к скорости света.

17. Сильно симметричное вещество — это вещество, сжатое до такой степени, при которой микрочастицы внутри него наслаиваются друг на друга, а само тело коллапсирует в чёрную дыру. Термин «симметрия» объясняется следующим: Возьмём известные всем со школьной скамьи агрегатные состояния вещества - твёрдые, жидкие, газообразные. Для определённости в качестве твёрдого вещества рассмотрим идеальный бесконечный кристалл. В нём существует определённая, так называемая дискретная симметрия относительно переноса. Это означает, что, если сдвинуть кристаллическую решётку на расстояние, равное интервалу между двумя атомами, в ней ничего не изменится - кристалл совпадет сам с собой. Если же кристалл расплавить, то симметрия получившейся из него жидкости будет иной: она возрастёт. В кристалле равноценными были только точки, удалённые друг от друга на определённые расстояния, так называемые узлы кристаллической решётки, в которых находились одинаковые атомы.
Жидкость же однородна по всему объёму, все её точки неотличимы одна от другой. Это означает, что жидкости можно смещаться на любые произвольные расстояния (а не только на какие-то дискретные, как в кристалле) или поворачиваться на любые произвольные углы (чего в кристаллах делать нельзя вообще) и она будет совпадать сама с собой. Степень её симметрии выше. Газ ещё более симметричен: жидкость занимает определённый объём в сосуде и наблюдается асимметрия внутри сосуда, где жидкость есть, и точки, где её нет. Газ же занимает весь предоставленный ему объём, и в этом смысле все её точки неотличимы одна от другой. Всё же здесь было бы правильнее говорить не о точках, а о малых, но макроскопических элементах, потому что на микроскопическом уровне отличия всё-таки есть. В одних точках в данный момент времени имеются атомы или молекулы, а в других нет. Симметрия наблюдается только в среднем, либо по некоторым макроскопическим параметра объёма, либо по времени.
Но мгновенной симметрии на микроскопическом уровне здесь по-прежнему ещё нет. Если же вещество сжимать очень сильно, до давлений которые в обиходе недопустимы, сжимать так, что атомы были раздавлены, их оболочки проникли друг в друга, а ядра начали соприкасаться, возникает симметрия и на микроскопическом уровне. Все ядра одинаковы и прижаты друг к другу, нет не только межатомных, но и межъядерных расстояний и вещество становится однородным (странное вещество).
Но есть ещё субмикроскопический уровень. Ядра состоят из протонов и нейтронов, которые двигаются внутри ядра. Между ними тоже есть какое-то пространство. Если продолжать сжимать так, что будут раздавлены и ядра, нуклоны плотно прижмутся друг к другу. Тогда и на субмикроскопическом уровне появится симметрия, которой нет даже внутри обычных ядер.
Из сказанного можно усмотреть вполне определённую тенденцию: чем выше температура и больше давление, тем более симметричным становится вещество. Исходя из этих соображений сжатое до максимума вещество именуется сильно симметричным.

18. Слабо симметричное вещество — состояние, противоположное сильно симметричному веществу по своим свойствам, присутствовавшее в очень ранней Вселенной при температуре близкой к планковской, возможно, через 10-12 секунд после Большого Взрыва, когда сильные, слабые и электромагнитные силы представляли из себя единую суперсилу. В этом состоянии вещество сжато до такой степени, что его масса переходит в энергию, которая начинает инфлуировать, то есть неограниченно расширяться. Достичь энергий для экспериментального получения суперсилы и перевода вещества в эту фазу в земных условиях пока невозможно, хотя такие попытки предпринимались на Большом Адронном Коллайдере с целью изучения ранней вселенной. Ввиду отсутствия в составе суперсилы, образующей это вещество, гравитационного взаимодействия, суперсила является не достаточно симметричной в сравнении с суперсимметричной силой, содержащей все 4 вида взаимодействий. Поэтому данное агрегатное состояние и получило такое название.

19. Лучевое вещество — это, по сути дела, уже совсем не вещество, а в чистом виде энергия. Однако именно это гипотетическое агрегатное состояние примет тело, достигшее скорости света. Также его можно получить, разогрев тело до планковской температуры (1032К), то есть разогнав молекулы вещества до скорости света. Как следует из теории относительности, при достижении скорости более 0,99 с, масса тела начинает расти гораздо быстрее, нежели при "обычном" ускорении, кроме того тело удлиняется, разогревается, то есть начинает излучать в инфракрасном спектре. При пересечении порога 0,999 с, тело кардинально видоизменяется и начинает стремительный фазовый переход вплоть до лучевого состояния. Как следует из формулы Эйнштейна, взятой в полном виде, растущая масса итогового вещества складывается из масс, отделяющихся от тела в виде теплового, рентгеновского, оптического и других излучений, энергия каждого из которых описывается следующим членом в формуле. Таким образом, тело приблизившееся к скорости света начнет излучать во всех спектрах, расти в длину и замедляться во времени, утоньшаясь до планковской длины, то есть по достижении скорости с, тело превратится в бесконечно длинный и тонкий луч, двигающийся со скоростью света и состоящий из фотонов, не имеющих длины, а его бесконечная масса полностью перейдет в энергию. Поэтому такое вещество и называется лучевым.

Для критически настроенного человека весьма интересными и полезными могут оказаться наблюдения за тем, как при переходе людей из одного состояния в другое меняются их физиологические характеристики. Например, поза и тон голоса могут меняться практически мгновенно. Наблюдая за другими, вы сможете многое открыть в самом себе, особенно если до сих пор вы считали, что лишены творческой энергии или что вам не хватает реализма, или что вы плохой организатор. Вы можете несколько модифицировать модель стратегии Диснея – например, у себя дома используйте различные комнаты или кресла для обозначения разных позиций. Но помните о необходимости соблюдения следующих важных правил НЛП:

Каждой позиции должен соответствовать некий осязаемый «якорь», такой, чтобы он неизменно ассоциировался у вас с определенным состоянием (так же, как любимое кресло ассоциируется у вас с отдыхом).

Прежде чем войти в какое-то новое состояние, выйдите из предыдущего (поэтому целесообразно использовать для различных состояний и разные положения в пространстве). В противном случае существует опасность прихватить с собой элементы прежнего состояния при переходе в новое, «сесть на два стула сразу».

Как можно больше практикуйтесь (так же, как и при освоении любой другой техники) и будьте гибкими. Модель стратегии Диснея можно применять в самых различных случаях – и по отношению к людям, и по отношению к процессам, медленным или быстропротекающим.

Все это не более чем модели и приемы, на практике же вы вольны думать так, как считаете нужным, и менять точку зрения по своему усмотрению. Цель проведенного выше упражнения – помочь вам научиться в случае необходимости мгновенно переходить из одного состояния в другое (например, в случае внезапной опасности). Если вы сумеете представить себя входящим в какую-то определенную комнату или сидящим в каком-то определенном кресле, эти представления смогут вызвать у вас такие же ассоциации, как и реальные физические действия. Умение создавать для себя подобные подкрепляющие «якоря» является необходимым условием процесса обучения.

Моделируем себя самого

Ранее мы рассматривали моделирование как выявление стратегий деятельности людей, достигших совершенства в какой-либо области, и воспроизведение этих стратегии в своей деятельности. Модель стратегии Диснея, однако, наглядно показывает, что мы можем основываться и на собственных воспоминаниях. Внутри любого из нас находятся мечтатель, реалист и критик, которые при определенных условиях могут действовать нам во благо. Таким образом, каждый из нас располагает внутренними ресурсами, необходимыми для повышения эффективности своей деятельности. Если вы когда-нибудь имели сильную побудительную мотивацию, были уверены в себе, если вам казалось, что все зависит только от вас, если вы были изобретательными, настойчивыми и готовыми к осмысленному риску, тогда вам не нужно искать пример для подражания Просто перенесите одну из своих эффективных стратегий в новую сферу деятельности. Например, из области спорта – в профессиональную сферу. Успешность в работе перенесите домой, из частной жизни – в общественную, и наоборот. Научитесь оценивать достоинства эффективных стратегий вне зависимости от тех или иных конкретных обстоятельств.

Подобно рецепту миндального пирожного или правилам перехода через улицу, стратегии могут быть использованы всеми. Необходимым условием личной успешности является умение находить в наибольшей степени подходящие вам стратегии в своем личном опыте или в опыте других людей. И отбрасывать те стратегии, которые недостаточно эффективны для достижения стоящих перед вами в данный момент целей.

В умении использовать модели для изменения стратегий заключается суть так называемого ускоренного обучения. Мы можем существенно ускорить обычно довольно вялотекущий процесс обучения, применив собственные эффективные стратегии. Так же мы можем использовать опыт других. Хотя, конечно, при этом не приходится рассчитывать на то, чтобы сразу же достичь их уровня. Каждый из нас способен научиться пользоваться обеими половинами своего мозга, более эффективно использовать внутренние ресурсы и таким образом добиваться исключительных успехов.

Часть пятая
Творческий подход к решению проблем

Глава 13
Использование для мышления обоих полушарий головного мозга

Стадии процесса мышления

Рассмотрение стадий мышления может оказаться весьма полезным. Эти стадии не обязательно должны быть строго последовательными, но нам важно знать, каким образом действуют различные «операционные» системы головного мозга и каким образом индивидуальный процесс мышления соотносится с универсальными мыслительными стратегиями.

Подготовка

Стадия подготовки соответствует этапу планирования какого-либо проекта и включает в себя определение проблемы, сбор данных и принятие основных допущений. Эта стратегия во многом сходна с первой стадией четырехзвенной циклической модели успеха, рассмотренной нами в части первой, на которой вы решаете, что, собственно, вам нужно и какова ваша цель. На этом этапе следует сформулировать вашу цель в письменном виде, а затем использовать технику визуализации для того, чтобы как можно более полно ощутить желаемый результат и отразить его в формулировке цели.

Мы уже говорили о том, насколько важно иметь четкое представление о желаемом результате в процессе общения. То же самое справедливо и в отношении процесса решения проблем. Задайте сами себе вопрос: «Чего именно я хотел бы добиться?» Суть «проблемы» общения, так же как и любой другой, заключается в преодолении разрыва между вашим нынешним и желаемым состоянием (при помощи обмена информацией, убеждения, получения ответов на вопросы и т. п.)

Анализ

На этой стадии следует заглянуть в глубь проблемы, учесть все плюсы, взвесить все «за» и «против» К сожалению, довольно часто решение проблемы сводят к анализу ее частей и работе над ними. Анализ определенных сторон вопроса в ущерб целостному представлению связан с деятельностью левого полушария головного мозга. Этот процесс носит линейный характер, логическая схема выглядит примерно следующим образом «Если А, то Б».

К несчастью, чем дальше вы продвигаетесь по этому пути, тем труднее вам становится признать правомочность какого-либо иного, не линейного типа мышления. Преимущество линейного типа мышления состоит в том, что на его основе можно создавать алгоритмы, используемые при разработке разного рода методов и систем. Недостаток же этого типа мышления состоит в том, что с его помощью невозможно решить такие проблемы, перед которыми бессильны различные логически выстроенные «системы» и компьютерные программы. Такие проблемы слишком сложны и во многом зависят от «человеческого» фактора.

Понравилась статья? Поделиться с друзьями: