Что такое плазма в физике. Состояние плазмы. Земная природная плазма

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Тихоокеанский государственный экономический университет

Кафедра физики

Тема: Плазма - четвертое состояние вещества

Выполнила:

Патук С.В.

Владивосток

Введение 3

1.Что такое плазма? 4

1.1. Наиболее типичные формы плазмы 5

2. Свойства и параметры плазмы 6

2.1. Классификация 6

2.2. Температура 6

2.3. Степень ионизации 7

2.4. Плотность 8

2.5. Квазинейтральность 8

3 Математическое описание 9

3.1. Флюидная (жидкостная) модель 9

3.2. Кинетическое описание 9

3.3. Particle-In-Cell (частица в ячейке) 9

4. Использование плазмы 10

Заключение 11

Список литературы 12

Введение

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объёмформу, наличием или отсутствием дальнегоближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразнымсвободной энергииэнтропииплотности и других основных физических свойств.

Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии.

  1. Что такое плазма?

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX

в. стали именовать бесцветную часть крови (без красных и белых телец) и

жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832-1919), изучавший электрический

разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных

трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё

состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически

заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

    1. Наиболее типичные формы плазмы

Наиболее типичные формы плазмы

Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

управляемого термоядерного синтеза

Электрическая дугадуговой лампе и в дуговой сварке

Плазменная лампа (см. рисунок)

Дуговой разрядтрансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Огни святого Эльма

Ионосфера

пламени (низкотемпературная плазма)

Космическая астрофизическая плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетамизвездамигалактиками)

туманности

2.Свойства и параметры плазмы

Плазма обладает следующими свойствами:

плотностьзаряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:

Где - концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

2.1. Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.2. Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

2.3. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni - концентрация ионов, а na - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne= ni, где - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служитьСолнце.

2.4. Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объема, а число частиц в единице объема). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов n0. В горячей плазме n0 мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится rs, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

2.5. Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

3 Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей.

3.1. Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

3.2. Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

3.3. Particle-In-Cell (частица в ячейке)

Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.

4. Использование плазмы

Наиболее широко плазма применяется в светотехнике - в газоразрядных

лампах, освещающих улицы, и лампах дневного света, используемых в

помещениях. А кроме того, в самых разных газоразрядных приборах:

выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц.

Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на

диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них

ионизованы электрическим разрядом.

Свойствами, характерными для плазмы, обладают электроны

проводимости в металле (ионы, жестко закрепленные в кристаллической

решётке, нейтрализуют их заряды), совокупность свободных электронов и

подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел.

Газовую плазму принято разделять на низкотемпературную - до 100

тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе.

Плазмотроны применяются и в горнорудной промышленности, и для резки

металлов.

Созданы также плазменные двигатели, магнитогидродинамические

электростанции. Разрабатываются различные схемы плазменного ускорения

заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза.

Термоядерными называют реакции синтеза более тяжёлых ядер из ядер

лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития

Т), протекающие при очень высоких температурах (» 108 К и выше).

В естественных условиях термоядерные реакции происходят на Солнце:

ядра водорода соединяются друг с другом, образуя ядра гелия, при этом

выделяется значительное количество энергии. Искусственная реакция

термоядерного синтеза была осуществлена в водородной бомбе.

Заключение

Плазма – ещё малоизученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.

Список литературы

    Вурзель Ф.Б., Полак Л.С. Плазмохимия, М, Знание, 1985.

    четвертым состояние ... природе. – М: «Просвещение», 1988. Д.Л.Франк-Каменецкий. Плазма четвертое состояние вещества . – М: Атомиздат, 1968. Физический энциклопедический словарь...

Возвращение чародея Келер Владимир Романович

Плазменное - четвертое состояние вещества

Возьмем металлическое тело, скажем пулю, и, положив ее в жароупорный тигелек, поставим тигелек в электропечь. Пройдет немного времени, и пуля расплавится, превратится в жидкость, вещество перейдет во второе состояние.

Но будем повышать нагрев. Если возможности печи позволят, металл в конце концов закипит и испарится. Вещество перейдет в свое третье состояние.

Не так еще давно даже самые осведомленные физики на этот вопрос отвечали, что ничего особенного не произойдет. Газ просто нагреется сильнее, вот и все. Его молекулы приобретут высокую кинетическую энергию и станут еще быстрее метаться между стенками сосуда.

В таком ответе не было ничего удивительного. Люди не умели тогда получать особенно высоких температур и не могли знать, что будет с веществом, допустим, при 6000 градусов. В обычных топливных печах максимальная температура достигает только 2000, а в электрических - 3000 градусов.

Теперь положение изменилось. Даже в промышленных условиях добиваются иногда температур порядка 12 000 градусов. А физики по «добыванию» высоких температур превзошли пределы самых невероятных фантазий.

В Институте атомной энергии научным сотрудником М. С. Иоффе были произведены эксперименты, в которых удалось получить температуру для дейтерия 60 миллионов градусов - в три раза более высокую, чем в центре Солнца (по современным представлениям, температура в центре Солнца несколько менее 20 миллионов градусов). Академик Евгений Константинович Завойский добился еще более эффектных результатов: в своих опытах ему вместе с сотрудниками удалось нагреть потоки электронов до температуры свыше 100 миллионов градусов.

Сейчас уже известно точно: выше 6000 градусов газы, даже что ни на есть устойчивые, как бы испаряются.

Что же с ними происходит?

Когда при бешеных скоростях, вызванных сильным нагревом, атомы вещества сталкиваются один с другим, из них выбиваются электроны. Утрачивая часть электронов, атомы превращаются в положительные ионы, то есть в «осколки», заряженные положительным электричеством. Электроны, как известно, заряжены отрицательно. В результате получается смесь из отрицательных электронов, положительных ионов и не успевших «испариться» нейтральных атомов. Так как положительное электричество в такой смеси равно отрицательному электричеству, смесь в целом остается нейтральной. Но электроны сталкиваются между собой и с ионами и заставляют «испаренный газ» светиться (что бывает, впрочем, не всегда, а лишь при достаточном количестве частиц; если разрежение высокое, вещество может стать совсем невидимым).

Облако материи в таком особо возбужденном состоянии и называется плазмой. Открыл ее в 1920 году выдающийся индийский астрофизик Мег Над Сага.

Что плазма уже не газ, а качественно совсем иное, новое состояние вещества, ученые убедились довольно быстро.

Каждое состояние вещества имеет свои особые свойства, не похожие на свойства остальных состояний. Имеет их и плазма.

Свойства плазмы резко отличаются от свойств газа. Газ, например, - электрический изолятор. Плазма, хотя она в целом и нейтральна, как газ, наоборот, прекрасно проводит электрический ток. В отличие от металлов, которые проводят ток тем хуже, чем больше они нагреты, электропроводность плазмы растет с увеличением температуры.

Теория говорит, что при очень высокой температуре плазма практически должна обладать свойством сверхпроводимости, то есть ее электрическое сопротивление должно быть близко к нулю. Кроме того, плазма - идеальный проводник тепла, она - сверхтеплопроводящий материал.

В плазме очень много тепла, но есть и то, чего нет ни в одном теплоносителе, - порядок . Сильное магнитное поле, в котором добывается плазма, вносит в ее движение порядок, причем необыкновенный: винтовой, или иначе - гиротропный.

Острый интерес к плазме в наши дни вызван многими причинами. Первая, конечно, заключается в том, что, как оказалось, плазма гораздо больше распространена в природе, чем это можно было бы предполагать. Почти вся Вселенная состоит из плазмы. Из плазмы состоят Солнце, горячие звезды, туманности, межзвездный газ.

Выяснилось, что с плазмой люди имели дело задолго до ее открытия.

Вода начинает испаряться еще до того, как достигает температуры своего кипения. И плазма образуется не обязательно при температуре 6 и выше тысяч градусов. Она возникает, например, под воздействием сильного облучения газа рентгеновыми или ультрафиолетовыми лучами. Поместив газ в мощное электрическое поле, его также можно привести в состояние ионизации, частично обратить в плазму.

Слабо горит свеча. И все же ее пламя хоть в малой степени, но ионизировано. Это еще не настоящая плазма, но уже намек на нее. А вот ослепительный свет электрической дуга и мягкое свечение неоновой трубки прямо исходят от плазмы. Близко к настоящей плазме пламя сварочной горелки и форсунки дизеля, пламя в цилиндре двигателя внутреннего сгорания.

Кратковременное плазменное состояние возникает в стволе орудия при выстреле. Вообще при всяком взрыве большой массы взрывчатого вещества происходит образование плазмы.

Плазма образует канал электрической искры и молнии. Ионизированные слои в атмосфере Земли состоят из плазмы. Полярное сияние есть не что иное, как свечение ионизированного газа, то есть тоже плазмы.

Юрий Гагарин совершил свой подвиг буквально в объятиях плазмы. Когда космический корабль «Восток», взметнувшись с площадки космодрома, с грохотом пробивал плотные слои атмосферы, сопла ракетного двигателя извергали плазму.

Плазма широко распространена повсюду, но, пожалуй, еще сильнее привлекает она внимание ученых своими возможностями для техники будущего.

Плазма - самое перспективное состояние вещества для преобразования тепла непосредственно в электричество. По-видимому, в безмашинных электростанциях будущего в движении будет находиться только плазма. Проходя между полюсами сверхмощных магнитов, потоки плазмы будут превращать энергию своего движения в энергию электрического тока.

Не за горами создание и космических кораблей с плазменными двигателями. С такими двигателями, выбрасывающими реактивную плазменную струю со скоростями в десятки или даже сотни тысяч километров в секунду, можно отправиться на исследование самых далеких планет Солнечной системы.

Весной 1965 года советские ученые провели первые успешные испытания плазменных двигателей в космических условиях - на борту космического корабля «Зонд-2».

Велики перспективы плазмы и в области управляемых термоядерных реакций. Академик Л. Н. Арцимович считает даже, что это важнейшая задача плазмы. Он писал:

«Физика плазмы не относится к магистральным направлениям науки, но тем не менее за последнее десятилетие она разрабатывается весьма интенсивно, так как с ней связаны надежды на решение задач исключительного перспективного значения. Первое место среди них занимает общеизвестная проблема управляемого термоядерного синтеза, решение которой должно полностью устранить угрозу энергетического голода на нашей планете».

Из книги Медицинская физика автора Подколзина Вера Александровна

26. Стационарное состояние Принцип производства энтропии. Организм как открытая системаВыше была описана направленность термодинамических процессов в изолированной системе. Однако реальные процессы и состояния в природе и технике являются неравновесными, а многие

Из книги Возвращение чародея автора Келер Владимир Романович

Твердое - первое состояние вещества Древнегреческий философ Эмпедокл (490–430 гг. до н. э.) считал, что мир построен из четырех стихий, или элементов: земли, воды, воздуха и огня. Учение Эмпедокла разделяли многие ученые древности, в том числе и Аристотель. Потом оно проникло

Из книги Теория относительности для миллионов автора Гарднер Мартин

Жидкое - второе состояние вещества Помня о силах, действующих между молекулами или атомами твердых тел, нетрудно догадаться, почему эти тела плавятся. Потому что при повышении температуры колебания каждого отдельного атома около его нормального положения становятся

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

Газообразное - третье состояние вещества Не задумывались ли вы когда-нибудь над тем, какое состояние вещества для нас всего важнее? Почти все, кому я задавал такой вопрос, прося ответить не подумав, ответить сразу, ошибались. Потом лишь, в следующий момент спохватывались:

Из книги Гиперпространство автора Каку Мичио

10. Взрыв или устойчивое состояние Представьте себе картину постепенного расширения космоса, а затем пустите эту картину в обратном направлении, как это делают в кино. Ясно, что в «скрытом мраком прошлом и бездне времен», как однажды сказал Шекспир, должен был быть такой

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

СОВРЕМЕННОЕ СОСТОЯНИЕ 13.1. В результате работы организаций Манхэттенского Округа в Вашингтоне и Тенесси, групп ученых в Беркли, Чикаго, Колумбии, Лос-Аламосе и в других местах, промышленных групп в Клинтоне, Хэнфорде и многих других местах, конец июня 1945 г. застает нас в

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

3. Человек, который «видел» четвертое измерение К 1910 г. четвертое измерение стало практически обиходным выражением… Видоизменяясь от идеальной платоновской или кантовской реальности - или даже небес! - этот ответ на все проблемы, озадачивающие современную науку, -

Из книги автора

Четвертое измерение как искусство Период с 1890 по 1910 г. можно считать золотым веком четвертого измерения. Именно в это время идеи, высказанные Гауссом и Риманом, распространились в литературных кругах, внедрились в сознание широкой публики, оказали воздействие на

Из книги автора

Большевики и четвертое измерение в Царской России четвертое измерение приобрело известность благодаря трудам мистика Петра Успенского, познакомившего российских интеллектуалов с тайнами этого измерения. Влияние этой темы ощущалось настолько отчетливо, что Федор

Из книги автора

Двоеженцы и четвертое измерение В конце концов идея четвертого измерения пересекла Атлантический океан и попала в Америку. Ее вестником стала колоритная фигура - английский математик Чарльз Хауард Хинтон. Если Альберт Эйнштейн в 1905 г. корпел за письменным столом в

Из книги автора

Бесполезное четвертое измерение Оглядываясь назад, можно сделать вывод, что знаменитый доклад Римана был популяризован стараниями мистиков, философов и людей искусства и стал доступным широкой аудитории, но почти никак не углубил наше понимание природы. Рассматривая

Из книги автора

Четвертое измерение и встречи выпускников Разумеется, теория Эйнштейна уже не раз была представлена в популярных изложениях, авторы которых делали акценты на разных аспектах теории. Но лишь некоторые из них уловили сущность специальной теории относительности: время -

Из книги автора

Из книги автора

21. Четвертое и пятое измерения Время как четвертое измерение Пространство нашей Вселенной обладает тремя осями координат: «верх – низ», «восток – запад» и «север – юг». Однако чтобы пообедать с подругой, придется договориться не только о месте встречи,

Из книги автора

Время как четвертое измерение Пространство нашей Вселенной обладает тремя осями координат: «верх – низ», «восток – запад» и «север – юг». Однако чтобы пообедать с подругой, придется договориться не только о месте встречи, но и о времени. В этом смысле время –

Из книги автора

Глава 21. Четвертое и пятое измерения Подробнее об унификации пространства и времени см. [Торн 2009]. О «суперструнной революции» Джона Шварца и Майкла Грина и о том, как физики приняли концепцию многомерного балка, см. «Элегантная Вселенная. Суперструны, скрытые

Состояние плазмы практически единогласно признается научным сообществом как четвертое агрегатное состояние. Вокруг данного состояния даже образовалась отдельная наука, изучающая это явление – физика плазмы. Состояние плазмы или ионизованный газ представляется как набор заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю – квазинейтральный газ.

Также существует газоразрядная плазма, которая возникает при газовом разряде. При прохождении электрического тока через газ, первый ионизирует газ, ионизированные частицы которого являются переносчиками тока. Так в лабораторных условиях получают плазму, степень ионизации которой можно контролировать при помощи изменения параметров тока. Однако, в отличие от высокотемпературной плазмы, газоразрядная нагревается за счет тока, и потому быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.

Электрическая дуга — ионизированный квазинейтральный газ

Свойства и параметры плазмы

В отличие от газа вещество в состоянии плазмы обладает очень высокой электрической проводимостью. И хотя суммарный электрический заряд плазмы обычно равен нулю, она значительно подвержена влиянию магнитного поля, которое способно вызывать течение струй такого вещества и разделять его на слои, как это наблюдается на Солнце.

Спикулы — потоки солнечной плазмы

Другое свойство, которое отличает плазму от газа – коллективное взаимодействие. Если частицы газа обычно сталкиваются по двое, изредка лишь наблюдается столкновение трех частиц, то частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с несколькими частицами.

В зависимости от своих параметров плазму разделяют по следующим классам:

  • По температуре: низкотемпературная – менее миллиона кельвин, и высокотемпературная – миллион кельвин и более. Одна из причин существования подобного разделения заключается в том, что лишь высокотемпературная плазма способна участвовать в термоядерном синтезе.
  • Равновесная и неравновесная. Вещество в состоянии плазмы, температура электронов которого значительно превышает температуру ионов, называется неравновесной. В случае же когда температура электронов и ионов одинаковая говорят о равновесной плазме.
  • По степени ионизации: высокоионизационная и плазма с низкой степенью ионизации. Дело в том, что даже ионизированный газ, 1% частиц которого ионизированы, проявляет некоторые свойства плазмы. Однако, обычно плазмой называют полностью ионизированный газ (100%). Примером вещества в таком состоянии является солнечное вещество. Степень ионизации напрямую зависит от температуры.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже ) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.

Также плазменные ускорители используются в экспериментах по физике высоких энергий.

Плазма в природе

Состояние плазмы – наиболее распространенная форма вещества, на которую приходиться около 99% массы всей Вселенной. Вещество любой звезды – это сгусток высокотемпературной плазмы. Помимо звезд, существует и межзвездная низкотемпературная плазма, которая заполняет космическое пространство.

Ярчайшим примером является ионосфера Земли, которая представляет собой смесь нейтральных газов (кислорода и азота), а также сильно ионизированного газа. Ионосфера образуется как следствие облучения газа солнечным излучением. Взаимодействие же космического излучения с ионосферой приводит к полярному сиянию.

На Земле плазму можно наблюдать в момент удара молнии. Электрический искровой заряд, протекающий в атмосфере, сильно ионизирует газ на своем пути, образуя тем самым плазму. Следует отметить, что «полноценная» плазма, как набор отдельных заряженных частиц, образуется при температурах более 8 000 градусов Цельсия. По этой причине утверждение, что огонь (температура которого не превышает 4 000 градусов) – это плазма – лишь популярное заблуждение.

Кроме перечисленных выше трех состоянии вещество может на­ходиться в четвертом агрегатном состоянии – плазменном ,кото­рое открыто сравнительно недавно. Состояние плазмы возникает в том случае, если на вещество в газообразном состоянии дейст­вуют такие сильные ионизирующие факторы, как сверхвысокие температуры (в несколько миллионов градусов), мощные электри­ческие разряды или электромагнит-ные излучения. При этом про­исходит разрушение молекул и атомов вещества и превращение его в смесь, состоящую из положительно заряженных ядер и элект­ронов, движущихся с колоссальными скоростями. По этой причине плазму иногда называют электронно-ядерным газом.

Различают два вида плазмы: изотермическую и газоразряд­ную.

Изотермическая плазма получается при высоких температурах, под влиянием которых имеет место термическая диссоциация ато­мов вещества, и может существовать неограниченно долго. Такой вид плазмы представляет собой вещество звезд, а также шаровых молний. Ионосфера Земли – это также особая разновидность плаз­мы; однако в данном случае ионизация происходит под влиянием ультрафиолетового излучения Солнца.

Изотермическая плазма играет исключительно важную роль в космических процессах. Три других агрегатных состояния вещест­ва в космическом пространстве являются исключением.

Газоразрядная плазма образуется при электрическом разряде и поэтому устойчива только при наличии электрического поля. Как только прекращается действие внешнего поля, газоразрядная плаз­ма вследствие образования нейтральных атомов из ионов и элект­ронов исчезает в течение 10 –5 -10 –4 с.

Одним из замечательных свойств плазмы является ее высокая электрическая проводимость. Чем выше температура плазмы, тем выше ее проводимость. В силу этого через плазму можно пропу­скать токи в сотни тысяч и миллионы ампер.

При пропускании через плазму таких токов можно поднять ее температуру до десятков и даже сотен миллионов градусов, а дав­ление – до десятка гигапаскалей. Подобные условия, как известно, близки к проведению термоядерных реакций синтеза , при которых можно получать колоссальные количества энергии.

Как известно, энергия выделяется не только при делении ядер, но и при их синтезе, т. е. при слиянии более легких ядер в более тяжелые. Задача в этом случае состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно малые расстояния, где между ними начинают действовать ядерные силы притяжения. Так, например, если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия, то при этом выделилась бы огромная энергия. С помощью нагрева до высоких температур в результате обычных столкновений ядра мо­гут сблизиться на столь малые расстояния, что ядерные силы всту­пят в действие и произойдет синтез. Начавшись, процесс синтеза, как показывают расчеты, может дать такое количество теплоты, которое нужно для поддержания высокой температуры, необходи­мой для дальнейших слияний ядер, т.е. процесс будет идти непре­рывно. При этом получается такой мощный источник тепловой энергии, что ее количество можно контролировать только количе­ством необходимого материала. В этом и состоит сущность прове­дения управляемой термоядерной реакции синтеза.

При прохождении через плазму электрический ток создает сильное магнитное поле, которое сжимает поток электронов и ио­нов в плазменный шнур .Этим достигается тепловая изоляция плазмы от стенок сосуда. С увеличением силы тока электромагнит­ное сжатие плазмы проявляется сильнее. В этом заключается сущ­ность так называемого пинч-эффекта .Как показали исследования, пинч-эффект и, силы, создаваемые внешними магнитными полями, меняющимися по определенному закону, можно с успехом исполь­зовать для удержания плазмы в «магнитной бутылке», где проис­ходит реакция синтеза.

ТЕОРИЯ ХИМИЧЕСКОЙ СВЯЗИ

Общие положения учения о химической связи. Ковалентная связь

Понятие о химической связи является одним из основополагающих в современной науке. Без знания природы взаимодействия атомов невозможно понять механизм образования химических соединений, их состав и реакционную способность, и тем более, прогнозировать свойства новых материалов.

Самые первые и не вполне четкие представления о химической связи ввел Кекуле в 1857 г. Он указывал, что число атомов, связанных с атомом другого элемента, зависит от основности составных частей .

Впервые собственно термин «химическая связь» был введен А.М. Бутлеровым в 1863 г. В создании учения о химической связи большую роль сыграла его теория химического строения, предложенная в 1861 г. Однако, сформулировав основные положения теории, Бутлеров тогда еще не употреблял термина «химическая связь». Положения его учения таковы:

1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

2. Соединение атомов происходит в соответствии с их валентнос-тью.

3. Свойства веществ зависят не только от состава, но и от их «химического строения», т.е. от порядка соединения атомов в молекулах и характера их взаимного влияния.

Таким образом, свойства веществ определяются не только их качественным и количественным составом, но и внутренней структурой молекул.

В 1863 г. в работе «О различных объяснениях некоторых случаев изомерии» Бутлеров уже говорит о «способе химической связи между атомами», о «химической связи отдельных атомов».

Что же представляет собой термин «химическая связь»?

Можно дать ряд определений этого понятия, но самое очевидное из них то, что химическая связь это взаимодействие, возникающее между атомами в процессе образования веществ .

Научное объяснение природы химической связи смогло появиться только после возникновения учения о строении атома. В 1916 г. американский ученый физико-химик Льюис высказал предположение, что химическая связь возникает путем спаривания электронов, принадлежа-щих различным атомам. Эта идея явилась исходным пунктом для современной теорииковалентной химической связи .

В том же году немецкий ученый Коссель предположил, что при взаимодействии двух атомов один из них отдает, а другой – принимает электроны. Электростатическое взаимодействие образующихся ионов и приводит к получению устойчивого соединения. Развитие идей Косселя привело к созданию теории ионной связи .

В любом случае химическая связь имеет электрическое происхождение, т.к. обусловлена, в конечном счете, взаимодействием электронов.

Одной из причин возникновения химической связи является стремление атомов принять более устойчивое состояние. Необходимое условие образования химической связи – уменьшение потенциальной энергии системы взаимодействующих атомов.

При химических реакциях ядра атомов и внутренние электронные оболочки не претерпевают изменений. Химическая связь осуществляется за счет взаимодействия наиболее удаленных от ядра электронов, называемых валентными .

Валентными являются: у s-элементов – s-электроны внешнего энергетического уровня, у р-элементов – s- и р- электроны внешнего энергетического уровня, у d-элементов – s-электроны внешнего и d-электроны предвнешнего энергетических уровней, у f-элементов – s-электроны внешнего и f-электроны третьего снаружи энергетических уровней.

Обычно различают пять основных типов химической связи: ионную, ковалентную, металлическую, водородную, а также межмолекулярные взаимодействия , обусловленные силами Ван - дер - Ваальса, причем три первых типа связи существенно прочнее двух последних.

Современное учение о химической связи основано на квантово-механических представлениях. Для описания химической связи в настоящее время широко используются два метода: метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Метод ВС более прост и нагляден, поэтому рассмотрение теории химической связи начнем именно с него.

Рассмотрим наиболее часто встречающуюся ковалентную химичес-кую связь.

Метод валентных связей

В основе метода ВС лежат следующие положения.

1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит одновременно двум атомам. Сами же атомы сохраняют свою индивидуальность.

2. Ковалентная химическая связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

В широком смысле слова ковалентная связь – это химическая связь между атомами, осуществляемая путем обобществления электронов. Ковалентную связь можно рассматривать как универсальный, самый распространенный тип химической связи.

Для точного описания состояния электрона в молекуле необходи-мо решить уравнение Шредингера для соответствующей системы электронов и ядер, задавшись условием минимума энергии. Однако, в настоящее время решение уравнения Шредингера возможно лишь для самых простых систем. Впервые приближенный расчет волновой функции электрона был произведен в 1927 г. Гейтлером и Лондоном для молекулы водорода.


Рис. 4.1. Зависимость энергии системы из двух атомов водорода от

межъядерного расстояния для электронов с параллельными (1) и

антипараллельными (2) спинами.

В результате проведенной работы они получили уравнение, связывающее потенциальную энергию системы с расстоянием между ядрами двух атомов водорода. При этом оказалось, что результаты расчетов зависят от того, одинаковы или противоположны по знаку спины обоих электронов.

При параллельных спинах сближение атомов приводит к непрерыв-ному возрастанию энергии системы. При противоположно направленных спинах сближение атомов до некоторого расстояния r 0 сопровождается снижением энергии системы, после чего она вновь начинает возрастать (рис. 4.1).

Таким образом, если спины электронов параллельны, образования химической связи по энергетическим причинам не происходит, а в случае же противоположно направленных спинов электронов образуется молекула Н 2 – устойчивая система из двух атомов водорода, расстояние между ядрами которых составляет r 0 .

Это расстояние r 0 существенно меньше удвоенного атомного радиуса (для молекулы водорода – соответственно 0,074 и 0,106 нм), следовательно, при образовании химической связи происходит взаимное перекрывание электронных облаков, реагирующих атомов (рис. 3.2).



Рис. 4.2. Схема перекрывания электронных облаков при образовании

молекулы водорода

Вследствие перекрывания облаков электронная плотность между ядрами повышается, при этом возрастают силы притяжения между этой областью отрицательного заряда и положительно заряженными ядрами взаимодействующих атомов. Возрастание сил притяжения сопровож-дается выделением энергии, что и приводит к образованию химической связи.

При изображении структурных формул связь обозначают черточкой либо двумя точками (точка обозначает электрон):

Н – Н Н: Н

В рассмотренном случае обобществляются электроны, находящие-ся на s-орбиталях атомов водорода. Других электронов у атома водорода нет. В случае же, например, галогенов у каждого взаимодействующего атома на внешнем энергетическом уровне находятся также по три пары электронов, не участвующие в образовании химической связи (два s-электрона и четыре р-электрона):



Химическая связь в молекуле F 2 образуется за счет взаимодейст-вия неспаренных электронов, находящихся на атомных р-орбиталях, осталь-ные электроны участия в образовании химической связи не принимают (часто их называют неподеленными электронными парами).

В образовании молекул H 2 и F 2 принимают участие лишь по одному электрону от каждого атома. Ковалентная связь, образованная одной парой электронов, называется одинарной связью.

Связь, образованная двумя или тремя парами электронов, назы-вается кратной связью. Так, атомы кислорода и азота содержат соот-ветственно два и три неспаренных электрона:



Следовательно, в образовании молекул О 2 и N 2 принимают участие соответственно два или три электрона от каждого атома. Таким образом, связь в молекуле кислорода двойная, а в молекуле азота – тройная:

Каким способом может образовываться кратная связь? Все ли связи в этих случаях равноценны? Для ответа на этот и другие сопутствующие вопросы следует рассмотреть основные характеристики ковалентной связи.

Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.

Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.

Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.

В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае — для опы­тов тер­мо­ядер­ного син­теза. Кон­тро­ли­ру­е­мая реак­ция доста­точно сложна и энер­го­за­тратна, а вот некон­тро­ли­ру­е­мая доста­точно заре­ко­мен­до­вала себя как ору­жие колос­саль­ной мощ­но­сти – тер­мо­ядер­ная бомба, испы­тан­ная СССР 12 авгу­ста 1953 года.

Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Чело­век научился при­ме­нять плазму себе во благо. Бла­го­даря чет­вер­тому агре­гат­ному состо­я­нию веще­ства мы можем поль­зо­ваться газо­раз­ряд­ными лам­пами, плаз­мен­ными теле­ви­зо­рами, дуго­вой элек­тро­свар­кой, лазе­рами. Обыч­ные газо­раз­ряд­ные лампы днев­ного света — это тоже плазма. Существует в нашем мире также плазменная лампа . Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:

Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать север­ное сия­ние, “огни свя­того Эльма”, ионосферу Земли и, конечно, огонь.

Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.

Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.

В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.

Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.

Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.

Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.

Понравилась статья? Поделиться с друзьями: