Угломерные инструменты. Астролябия - это древний астрономический инструмент Древний прибор астронома

АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫ

Астрономические инструменты применялись с древнейших времён. С началом освоения земледелия, когда нужно было планировать сельскохозяйственные работы. Для этого нужно было определять моменты равноденствий и солнцестояний. Одновременно и нужды кочевого животноводства требовали освоения методов ориентирования. А для этого изучались звёзды, их движение. Движение Солнца и Луны. Примером древнейшей обсерватории может служить культово-астрономическое сооружение под Рязанью. Равноденствия и солнцестояния фиксировались по тени от Солнца и её совпадением с определёнными столбами.

Такие сооружения строились повсеместно, где селились первые земледельцы Арии. Но до нас дошли в наилучшем виде такие древние сооружения, как мегалиты Стоунхенжа.

Древняя астрономическая обсерватория Jantar-Mantar.

В принципе устройство этих обсерваторий одинаков - принцип визирования, то есть определение направления по двум точкам. Однако эти точки были направлены на горизонт. То есть древние обсерватории служили задачам календарного счёта дней.

Однако уже у скотоводов, а особенно с освоением мореплавания возникает потребность изучать и само небо. Так уже во времена древних восточных деспотий (Шумер, Ассирия, Вавилон, Египет) возникают принципы систематизации небесных объектов. Возникают идеи эклиптики. Она разбивается на 12 частей. Формируются созвездия и даются им названия. И строятся обсерватории. До нас они практически не дошли, но подобная им была обсерватория Улугбека. По сути это вырытая в земле дуга, на которой определялось положение звёзд.

Однако морякам такой инструмент был бесполезен. Потому появляются ручные астрономические инструменты. Из истории известно, что во втором тысячелетии до н.э. народы моря напали на Египет. Народы моря это Пеласги, Лелеги, Этруски и другие народы, которые относились к индоевропейцам Ариям. То есть наши родственники-предки. Они свободно ходили по Средиземному и Чёрному морям. И их умение ориентироваться, в том числе и по Солнцу и звёздам, перешло к грекам.

Так появились: Астрономические инструменты или приборы: гномон, армиллярная сфера, астролябия, квадрант, октант, секстант, хронометр...

Старинные астрономические инструменты
и инструменты навигации

Армиллярная сфера

Астролябия

Гномон

Квадрант

Октант Секста́нт Хронометр морской Морской компас

Универсальный инструмент

Армиллярная сфера есть собрание кругов, изображающих важнейшие дуги небесной сферы. Она имеет целью изобразить относительное положение экватора, эклиптики, горизонта и других кругов.

Астролябия (от греческих слов: άστρον - светило и λαμβάνω - беру), планисфера , аналемма - угломерный снаряд, употребляющийся для астрономических и геодезических наблюдений. А. применялась Гиппархом для определения долгот и широт звезд. Она состоит из кольца, которое устанавливалось в плоскости эклиптики, и перпендикулярного к нему кольца, на котором отсчитывалась широта наблюдаемого светила, после того как на него были наведены диоптры инструмента. По горизонтальному кругу отсчитывалась разность долгот между данным светилом в каким-нибудь другим. В позднейшее время А. была упрощена, в ней был оставлен только один круг, посредством которого мореплаватели отсчитывали высоту звезд над горизонтом. Круг этот подвешивался на кольце в вертикальной плоскости, и посредством алидады, снабженной диоптрами, наблюдались звезды, высота которых отсчитывалась на лимбе, к которому впоследствии приделывался нониус. Позднее вместо диоптр стали употреблять зрительные трубы, и, постепенно совершенствуясь, А. перешла в новый тип инструмента - теодолит, который и употребляется теперь во всех тех случаях, когда требуется некоторая точность измерений. В землемерном искусстве А. еще продолжает применяться, где при достаточно тщательной градуировке она позволяет измерять углы с точностью до минут дуги.

Гномон (др.-греч. γνώμων - указатель) - древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест), позволяющий по наименьшей длине его тени (в полдень) определить угловую высоту солнца.

Квадрант (лат. quadrans, -antis, от quadrare - сделать четырехугольным) - астрономический инструмент, для определения зенитальных расстояний светил.

Октант (в морском деле - октан) - угломерный астрономический инструмент. Шкала октанта составляет 1/8 часть окружности. Октант применялся в мореходной астрономии; практически вышел из употребления.

Секстант (секстан) - навигационный измерительный инструмент, используемый для измерения высоты светила над горизонтом с целью определения географических координат той местности, в которой производится измерение.

Квадрант, октант и секстант отличаются только долей окружности (четвёртая, восьмая и шестая часть соответственно). В остальном это тот же прибор. Современный секстант имеет оптический визир.

Астрономический компендиум представляет собой набор небольших инструментов для математических расчетов в едином футляре. Он обеспечивал пользователю множество вариантов в готовом формате. Это был не дешевый набор и, очевидно, указывал на богатство владельца. Этот сложный экспонат был изготовлен Джеймсом Кинвином для Роберта Деверю, второго графа Эссекса (1567 – 1601), чье оружие, гребень шлема и девиз выгравированы на внутренней стороны крышки. В компендиум входят пассажный инструмент для определения времени ночи по звездам, перечень широт, магнитный компас, перечень портов и гаваней, вечный календарь и лунный указатель. Компендиум мог использоваться для определения времени, высоты прилива в портах, а также календарных расчетов. Можно сказать, что это древний миникомпьютер.

Оптические инструменты

Подлинная революция в астрономии началась с изобретением Галилеем оптического рефракторного телескопа. Слово «телескоп» образовано из двух греческих корней и может быть переведено на русский язык как «смотрю вдаль». Действительно, это оптическое устройство представляет собой мощную зрительную трубу, предназначенную для наблюдения весьма удаленных объектов – небесных светил. Созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию. Гигантские телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной. Впрочем, сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

Хотя существуют косвенные свидетельства того, что оптические устройства, предназначенные для изучения звезд, были известны уже некоторым древним цивилизациям, официальной датой рождения телескопа принято считать 1609 год. Именно в этом году Галилео Галилей, экспериментируя с линзами для создания очков, нашел комбинацию, которая обеспечивала многократное приближение. Построенная же учёным первая зрительная труба стала прародительницей современных рефракторов и впоследствии получила название телескопа.

Телескоп Галилея представлял собой свинцовую трубу с двумя линзами: плосковыпуклой, которая служила объективом и плосковогнутой, служившей окуляром. Первая зрительная труба Галилея обеспечивала прямое изображение и лишь трёхкратное увеличение, однако впоследствии учёному удалось создать устройство, которое приближало предметы в 30 раз. При помощи своего телескопа Галилей обнаружил четыре спутника Юпитера, фазы Венеры, неровности (горы, долины, трещины, кратеры) на поверхности Луны, пятна на Солнце. Впоследствии схема галилеевского телескопа была усовершенствована Кеплером, который создал инструмент, предлагающий перевернутое изображение, но зато имеющий значительно большее поле зрения и увеличение. Линзовый телескоп совершенствовался и дальше: чтобы улучшить качество изображения, астрономы использовали новейшие технологии стекловарения, а также увеличивали фокусное расстояние телескопов, что, естественно приводило к увеличению и их физических размеров (например, в конце XVIII века длина телескопа Яна Гевелия достигала 46 м).

Первый зеркальный телескоп также появился в XVII веке. Этот прибор был изобретён сэром Исааком Ньютоном, который, посчитав хроматизм неустранимой проблемой телескопов-рефракторов, решил двигаться в другом направлении. В 1668 году, после долгих экспериментов со сплавами и технологиями полировки зеркал, Ньютон продемонстрировал первый зеркальный телескоп, который, при длине всего 15 см и диаметре зеркала 25 мм действовал ничуть не хуже длинного телескопа-рефрактора. Хотя изображение, создаваемое первым телескопом Ньютона, было тусклым и недостаточно ярким, впоследствии ученому удалось значительно улучшить характеристики своего устройства.

Стремясь усовершенствовать конструкцию телескопа таким образом, чтобы добиться максимально высокого качества изображения, учёные создали несколько оптических схем, использующих как линзы, так и зеркала. Среди таких телескопов наибольшее распространение получили катадиоптрические системы Ньютона, Максутова-Кассегрена и Шмидта-Кассегрена, о которых более подробно будет сказано ниже.

Конструкция телескопа

Телескоп – это оптическая система, которая, «выхватывая» из пространства небольшую область, зрительно приближая расположенные в ней объекты. Телескоп улавливает параллельные своей оптической оси лучи светового потока, собирает их в одну точку (фокус) и увеличивает при помощи линзы или, чаще, системы линз (окуляра), которая одновременно снова преобразует расходящиеся лучи света в параллельные.

По типу элемента, используемого для сбора световых лучей в фокусе, все современные потребительские телескопы подразделяются на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые (катадиоптрические). Возможности телескопов каждой группы несколько отличаются, поэтому, чтобы выбрать оптимальный для своих нужд оптический инструмент, начинающий астроном-любитель должен иметь некоторое представление о его устройстве.

Линзовые телескопы (рефракторы)

Вслед за своим созданным Галилеем прародителем, телескопы этой группы фокусируют свет при помощи одной или нескольких линз, вследствие чего называются линзовыми, или рефракторами.

Перед телескопами других систем рефракторы имеют целый ряд преимуществ. Так, закрытая труба телескопа предотвращает проникновение внутрь трубы пыли и влаги, которые оказывают негативное воздействие на полезные свойства телескопа. Кроме того, рефракторы просты в обслуживании и эксплуатации – положение их линз зафиксировано в заводских условиях, что избавляет пользователя от необходимости самостоятельно производить юстировку, то есть тонкую подстройку. Наконец, у линзовых телескопов отсутствует центральное экранирование, которое уменьшает количество поступающего света и ведет к искажению дифракционной картины. Рефракторы обеспечивают высокую контрастность и превосходное разрешение изображений при наблюдении планет. Однако есть у телескопов этой системы и минусы, основным из которых является эффект, известный как хроматическая аберрация. Он возникает вследствие того, что световые лучи разной длины имеют неодинаковую сходимость, то есть точки фокуса для разных составляющих спектра будут находиться на различном расстоянии от преломляющей линзы. Зрительно хроматическая аберрация проявляется как цветные ореолы вокруг ярких объектов. Для устранения этого дефекта должны использоваться дополнительные линзы и оптические элементы из особых видов стекла. А ведь конструкция рефракторов и сама по себе предполагает не менее двух линз, все четыре поверхности которых должны иметь хорошо выверенную кривизну, быть тщательно отполированы и покрыты как минимум одним просветляющим слоем. Другими словами, хороший рефрактор – устройство, достаточно сложное в производстве, а потому, как правило, весьма недешевое.

Зеркальные телескопы (рефлекторы)

Телескопы другой большой группы собирают световой пучок при помощи зеркала, поэтому называются зеркальными телескопами, рефлекторами. Самая популярная конструкция зеркального телескопа называется по имени своего изобретателя, телескопом системы Ньютона.

Зеркало как элемент оптической системы рефлектора представляет собой вогнутую пластину стекла параболической формы, передняя поверхность которого покрыта отражающим материалом. При использовании в подобных конструкциях сферических зеркал, свет, отражаемый их поверхностью, не сходится в одной точке, формируя в фокусе немного размытое пятно. В результате этого изображение теряет контраст, то есть возникает эффект, известный как сферическая аберрация.

Предотвратить ухудшение качества изображения, помогают зеркала параболической формы. На левой картинке, отражаемый сферическими зеркалами свет не сходится в одной точке, что приводит к ухудшению резкости На правой картинке, параболоидные зеркала собирают все лучи в единую точку фокуса.

Проникающий в телескоп свет попадает на зеркало, которое отражает лучи вверх. В точку фокуса свет отражается при помощи
плоского вторичного зеркала эллиптической формы, укрепленного в центре трубы под углом 45 градусов. Разумеется, само вторичное зеркало в окуляр увидеть нельзя, однако оно является препятствием на пути светового потока и экранирует свет, что может изменять дифракционную картину и приводить к небольшой потере контрастности. Среди плюсов рефлекторов – отсутствие хроматизма, ведь лучи света в силу самой конструкции отражаются от стекла, а не проходят сквозь него. К тому же, по сравнению с рефракторами зеркальные телескопы менее дороги в производстве: в конструкции рефлектора присутствуют всего две нуждающиеся в полировке и специальных покрытиях поверхности.

Катадиоптрические телескопы - оптические системы которых комбинируют линзы и зеркала. Здесь представлены катадиоптрические телескопы системы Ньютона, телескопы Шмидта-Кассегрена и Максутова-Кассегрена.

Зеркально-линзовые телескопы системы Ньютона отличаются от классических представителей своего класса наличием на пути светового потока к точке фокуса корректирующей линзы, которая, при сохранении компактных размеров телескопа, позволяет добиваться большего увеличения. Например, при использовании корректирующей линзы с двукратным увеличением и физической длине системы 500 мм, фокусное расстояние составит 1000 мм. Подобные рефлекторы значительно легче и компактнее «нормальных» телескопов Ньютона того же фокусного расстояния, а, кроме того, просты в эксплуатации, легки в установке и менее подвержены воздействию ветра. Положение корректирующей линзы фиксируется в процессе производства, но зеркала, так же как и в случае с телескопом Ньютона стандартной конструкции, нуждаются в регулярной юстировке.

Оптические схемы телескопов Шмидта-Кассегрена включают тонкие асферические коррекционные пластинки, которые направляют свет на первичное вогнутое зеркало, обеспечивая исправление сферической аберрации. После этого световые лучи попадают на вторичное зеркало, которое, в свою очередь, отражает их вниз, направляя через отверстие

в центре первичного зеркала. Непосредственно за первичным зеркалом находится окуляр или диагональное зеркало. Фокусировка производится посредством перемещения первичного зеркала или окуляра. Главным достоинством телескопов подобной конструкции является сочетание портативности и большого фокусного расстояния. Основной минус телескопов Шмидта-Кассегрена – сравнительно большое вторичное зеркало, которое сокращает количество света и может вызывать некоторую потерю контрастности.

Телескопы системы Максутова-Кассегрена имеют схожую конструкцию. Так же, как системы Шмидта-Кассегрена, эти модели исправляют сферическую аберрацию при помощи корректора, в качестве которого, вместо пластинки Шмидта, используется толстая выпукло-вогнутая линза (мениск). Проходя через вогнутую сторону мениска, свет попадает на первичное зеркало, которое отражает его вверх на вторичное зеркало (как правило, покрытую зеркальным слоем область на выпуклой стороне мениска). Дальше, так же, как и в конструкции Шмидта-Кассегрена, лучи света проходят через отверстие в первичном зеркале и попадают в окуляр. Телескопы системы Максутова-Кассегрена менее сложны в производстве, чем модели Шмидта-Кассегрена, однако использование в оптической схеме толстого мениска увеличивает их вес.

Современные телескопы

Большинство современных телескопов являются рефлекторами.

На данный момент крупнейшими в мире телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях. Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.

Крупнейшим в мире телескопом с цельным зеркалом является Large Binocular Telescope, расположенный на горе Грэхэм (США, штат Аризона). Диаметр обоих зеркал составляет 8,4 метра.

11 октября 2005 года в эксплуатацию был запущен телескоп Southern African Large Telescope в ЮАР с главным зеркалом размером 11 x 9.8 метров, состоящим из 91 одинаковых шестиугольников.

Очень Большой
Телескоп
Канарский
телескоп
Телескоп
Хобби-Эберли
Джемини СУБАРУ SALT

Радиотелескопы

До конца Великой отечественной войны астрономические исследования велись только в оптическом диапазоне с помощью оптических телескопов. Однако уже во время Второй мировой войны для нужд обнаружения врвжеских самолётов стали разрабатываться радиолокационные станции. После войны было обнаружено, что радиолокационные станции ПВО обнаруживают и какие-то странные сигналы. Было обнаружено, что эти сигналы приходят из космоса. И так началось использование радиоустройств для исследования вселенной. Такие устройства назвали радиотелескопами. С помощью их открыли радиозвёзды - квазары, так открыли реликтовое излучение, излучение от Солнца, центра галлактики и т.д. и т.п. Радиотелескопы стали мощным орудием познания вселенной. И построено их великое множество.

Сначала это были небольшие параболические антенны:

Затем побольше на башнях с азимутальными установками:

Затем огромные, с поворачивающимися на рельсах фермах:

Секторные, где прямо на земле монтировалась часть параболоида антенны:

Радиотелескопы стали использовать совместно, когда суммарная мощность отдельных телескопов складывалась, давая мощность и разрешение большего телескопа:

Из отдельных телескопов стали создавать решётки,
что повышало разрешающую способность системы:

Кроме параболических антенн стали делать решётчатые антенны:

Космические радиотелескопы:

Самый большой в мире радио-телескоп

Радиотелескоп, установленный в Аресибо, - в настоящее время, крупнейший в мире (из использующих одну апертуру). Телескоп используется для исследований в области радиоастрономии, физики атмосферы и радиолокационных наблюдений объектов Солнечной системы. Астрономическая обсерватория Аресибо расположена в Пуэрто Рико, в 15 км от Аресибо, на высоте 497 мнад уровнем моря. Исследования проводятся Корнельским университетом в кооперации с Национальным научным фондом.

Особенности конструкции:Рефлектор телескопа расположен в естественной карстовой воронке и покрыт 38778 перфорированными алюминиевыми пластинами (от 1 до 2 м), уложенными на сетку из стальных тросов. Облучатель антенны подвижный, подвешен на 18 тросах к трём башням. Для проведения исследований по программе радиолокационной астрономии в обсерватории имеется передатчик мощностью 0,5 МВт. Строительство радиотелескопа было начато в 1960 году. Первоначальным назначением телескопа были исследования ионосферы Земли. Автор идеи строительства: профессор Корнельского университета Уильям Гордон. Официальное открытие обсерватории Аресибо состоялось 1 ноября 1963 года.

Выход за пределы оптического диапазона радиоастрономией сразу же поставил вопрос об использовании и других диапазонов электромагнитного излучения. Вообще информацию о космосе мы можем получать двумя путями - через электромагнитное излучение и корпускулярные потоки (потоки элементарных частиц). Были попытки улавливать и гравитационные волны, но пока безуспешно.

Электромагнитное излучение подразделяют на:

    радиоволны,

    инфракрасное излучение,

    световой диапазон,

    ультрафиолетовое излучение,

    рентгеновское излучение,

    гамма-излучение.

Инфракрасное (тепловое) и ультрафиолетовое излучения могут отражаться обычным зеркалом, поэтому используются обычные рефлекторные телескопы, но воспринимается изображение специальными термочувствительными датчиками и датчиками ультрафиолетового излучения.

Иное дело рентгеновское и гамма излучения. Рентгеновские и гамма- телескопы это особые приборы:

Астрономия и космонавтика.

Главной проблемой наблюдательной астрономии является земная атмосфера. Она не полностью прозрачна. Она движется, в том числе за счёт тепла. Часты облака и атмосферные осадки. В атмосфере много пыли, насекомые и пр. Поэтому мечтой астрономов всегда была возможность размещать свои приборы как можно выше. Как можно выше в горы, на самолёты и аэростаты. Но подлинный переворот в этой проблемы произошёл с запуском Советским Союзом искусственного спутника Земли. Едва ли не сразу астрономы и астрофизики бросились использовать представившуюся возможность. Прежде всего запуском космических зондов к Луне, Венере, Марсу и далее, и далее.

Кратко об исследовании Луны советскими учёными изложено на странице посвящённой Луне.

Исследование Солнечной системы при помощи автоматических зондов отдельная тема. Здесь приведём наиболее известные астрономические приборы выведенные на орбиты вокруг Земли.

Хаббл

Гершель

Чандра

WISE

Спектр-Р

Гранат

(источник http://grigam.narod.ru)


Простейшие астрономические инструменты.

Интересно, что у почти у всех начинающих любителей астрономии бессознательно сложилось мнение, что первый прибор по астрономии, который они должны иметь — это хотя-бы небольшой телескоп, или нечто подобное, бинокль или монокуляр. Но астрономы знали и менее «примитивных» помощников в своем труде, чем бинокли и телескопы, и эти помощники и ныне могут сыграть свою полезную роль при любительских наблюдениях, пусть и своебразную и небольшую (да и сейчас профессионалы-астрономы все еще пользуются механизмами этих приборов, оснащают ими телескопы для точности, и используют все для того же — определения углов на небесной сфере).

До 1611 года, до знаменательного года изобретения телескопа всем достославным Галилео Галилеем (или кем-то еще раннее, но все равно он был первым, использавшим телескоп для серъезных астрономических наблюдений), астрономы пользовались всякими расчерченными на градусы в прямом смысле деревянными палочками и перекладинами, квадратиками и кружочками больших и малых размеров. Это были всякие там астрономические посохи, высотомеры, секстанты, квадранты и трикветры.

Ими пользовались древнегреческие астрономы (а они почти все эти инструменты впервые и создали), и Аристарх, и Гиппарх, и Птолемей, и в средние века арабские астрономы довели их до совершенства. Использовались эти приборы для решения задач самого раннего зародившегося раздела астрономии — астрометрии, занимающейся вопросами над небесными светилами «Где, когда, и что» — для расчета положений светил на небесной сфере, расстояний между звездами, определению по небу времени, и поэтому они и называются угломерными инструментами.

Как и все приборы они требовали большей точности, и их и делали для этого как можно большими, а у арабских астрономов они стали настоящими громадинами, так квадранты достигали радиуса 60 м, а Николай Коперник с помощью таких приборов определяющий координаты планет и рассчитывающий по ним уже свою гелиоцентрическую систему, пользовался приборами, намного превышающими его рост. Но не обязательно было всегда делать такие громадины, для многих задач подходили и маленькие приборы. И конечно же, такие приборы (пусть и станут они у вас самыми первыми — или новыми помощниками, если уже у вас есть бинокль или телескоп, делать их намного проще самого простого телескопа), по силу сделать их любому любителю астрономии, человеку.

Основные материалы для этого найдутся у всех: дерево, пила, и транспортир... И благо, с ними можно и делать много полезного, они хорошие помощники в тех же визуальных наблюдениях метеоров, они помогают точнее, лучше и удобнее определить координаты метеора, положения серебристых облаков (которые также наблюдаются в основном визуально), совсем новичкам в наблюдениях звездного неба помогут легче понять смысл эфемерид и найти самим на небе планеты, понять структуру и определения начальных теорий небесной сферы.

К тому же и просто приятно обнаружить себя в душе каким-то древним астрономом, ощутить на себе эхо далекого прошлого, посмотреть на небо глазами древнего грека, араба с жарких пустынь, Улугбека, Коперника или Тихо Браге! А ниже — пусть и некоторые угломерные инструменты, и как их делать, что я насобирал из всякой астролитературы, которой уже и не помню. Многое соорудил сам, видя лишь где-то картинку какого-то исторического угломерного инструмента.

Астролябия:

Естественно же более упрощенная, чем древний предок, решает намного меньше задач. Так, в трактате арабского астронома Х в. ас-Суфи перечислялось 1000 способов использования астролябии! Эта астролябия же поможет измерять горизонтальные углы азимутов светил. Для ее изготовления необходимо иметь: Диск из многослойной фанеры, текстолита или оргстекла. Диаметр диска такой, чтобы на нем разместилась круговая шкала (лимб) из транспортира и за ней оставалось бы свободное поле 2-3 см.
Транспортир, лучше из тех, что есть, побольше.

Визирная планка. Изготовляется из плоскости латуни или дюралюминия шириной 2-3 см, и длиной, превышающей поперечник диска на 5-6 см. Выступающие за край диска концы полоски изогните под прямым углом вверх и пропилите в них продолговатые или круговые отверстия. На горизонтальной планке симметрично центру проделайте две большие широкие прорези, чтобы чрез них была виден градуируемый лимб транспортира. Середину визирной планки прикрепите к центру диска, с помощью болта, шайб и гаек, чтоб она вращалась в горизонтальной плоскости. На визирную планку к центру прикрепите и компас.

При наблюдениях направляйте визирную планку на светило так, чтобы оно было видно сквозь боковые прорези планки. Отношение градусной меры транспортира к планке (видную через поперечную прорез планки, через ту, что «ближе» к светилу) к стрелке севера компаса и будет азимутом светила.

Как найти самому азимут, высоту и зенитное расстояние:

Да вообще, не трудно догадаться, что измерять самому высоту и азимут светила можно и при помощи транспортира. Но как его положить, чтобы он «видел» круги небесной сферы? Один из простейших инструментов для этого — высотомер, с которым мы и познакомимся сейчас. Высотомер состоит из как можно большего (ну, и не метрового конечно — трудно будет делать!) транспортира, содержащего 1800. Из центра окружности А транспортира и перпендикулярно его радиусу (разделяющего наш транспортир на две равные части) устанавливается линейка (или рейка) такой длины, чтобы она в 3-4 раза превосходила радиус транспортира. А в центр транспортира привинчивают шарнир, а к нему веревку с грузом, так, чтобы веревка была тонка, а груз ее не порвал.

Если веревка в точке скрепления проходит вдоль линейки, то значит она прикреплена верно. К транспортиру, выше линии 0-1800 его шкалы и параллельно ей устанавливают еще визиры, из трехизогнутой (как у астролябии) планки, средняя сторона которой равна диаметру транспортира, другие (боковые) равны друг другу, и в точке пересечения диагоналей этих квадратов или прямоугольников проделайте дырки-окружности диаметром 3-5 мм. Противоположный конец линейки перпендикулярно к центру прикрепите к не очень толстой дощечке так, чтобы она без колебаний держала линейку к своему креплению, и чтоб линейка вращалась вокруг своего центра, а этот центр вставляется в центр окружности еще одного транспортира, на этот раз на полную окружность (3600). Внизу к линейке прикрепите какую-нибудь стрелку, чтобы та исходила из этого центра транспортира и «доставала» до его внешнего края.

Так же к дощечке желательно прикрепить компас, для указания юга, от которого отсчитываются астрономические азимуты. Прибор перед началом наблюдений устанавливают так, чтобы дощечка находилась неподвижно и по горизонтали, а нижний транспортир на 00 шкалы по компасу направлен на юг, часть от 0 до 1800 направлена к востоку, другая к западу. При измерении азимута и высоты светила (измеряются одновременно!) мы направляем на него визиры так, чтобы сквозь них оно было видно, и конечно, центр вращения А (для отсчитывания высоты) направляется сверху вниз, а в месте крепления к доске вправо-влево. Таким образом, получив изображение искомого светила в визире мы увидем, что верхний транспортир наклонен под определенным углом, отмеченным на шкале веревкой, это и есть высота h светила, а стрелка к нижнему транспортиру покажет значение азимута. Зенитное расстояние z же можно легко узнать по формуле z+h = 900.

Углы между светилами:

Т. н. астрономические грабли — простейший вариант угломерного прибора, состоит из двух деревянных линеек (например, по 60 см длиной), скрепленных в форме буквы Т. На конце линейки, противоположно перекладине, укрепляется визир. На перекладине по дуге окружности 57,3 см (построить можно с помощью шнура) с интервалом в 1 см (либо в 0,5 см) вбиваются гвоздики. Центром окружности является визир. При интервале разбития гвоздиков в 1 см соответствует угол в 1 градус на небесной сфере, при 0,5 см угол в полградуса. С помощью этого нехитрого инструмента можно проводить регулярные (скажем, каждый вечер в одно и то же время) измерения угловых расстояний планет и Луны относительно некоторых «опорных» звезд и тем самым устанавливать особенности движения упомянутых светил на небесной сфере.

Другой прибор так и называется угломерным инструментом. Состоит он из прямоугольного куска дерева 35×20 см. С одной из его сторон неподвижно прикреплена рейка (или линейка) длиной 60 см. В противоположном конце рейки прикрепляется другая такая же так, чтоб она вращалась вокруг центра крепления. По обеим концам реек параллельно прикрепляются визиры. На доске, аналогично астрономическим граблям, очерчена дуга радиусом 57,3 см, на ней нанесена шкала градусов.

При наблюдениях обычно визиры одной рейки направляют на звезду, неподвижной — на планету. Полученное на шкале расстояние концов реек и есть их угловое расстояние. С помощью этих приборов можно находить и горизонтальные координаты светила. Так, найдя юг (отметив его по компосу) мы от него отмерим расстояние до светила, и по градуируемой шкале получим его азимут. Отложив от светила прямое и точное направление на горизонт, получим его высоту, а от зенита — его зенитное расстояние. Подумайте, как тогда надо распложить приборы относительно горизонта и вертикали.

Многие считают, что наша цивилизация — источник постоянного прогресса, и все самые интересные открытия и разработки еще только впереди. Однако глубокие философские труды, некоторые шедевры архитектуры и даже созданные задолго до нас приборы отчетливо высвечивают неполноту этой концепции. Древним ученым также многое было известно, они создавали строения и вещи, принцип работы и назначение которых до конца непонятны. Четкая согласованность функционирования тех или иных устройств с законами физики и неопровержимость получаемых с их помощью сведений часто окутаны легендами. В число подобных приборов входит и астролябия, древний астрономический инструмент.

Назначение

Как понятно из названия («астра» в переводе с греческого означает «звезда»), прибор связан с изучением небесных тел. И действительно, астролябия — это инструмент, позволяющий рассчитать, на какой высоте относительно поверхности нашей планеты находятся звезды и Солнце, и на основе полученных данных определить местоположение того или иного земного объекта. В длительных путешествиях по суше и по морю астролябия помогала определять координаты и время, порой служила единственным ориентиром.

Строение

Астрономический инструмент состоит из диска, представляющего собой стереографическую проекцию звездного неба, и круга с высоким бортиком, в который диск вложен. Основа прибора (элемент с бортом) имеет в центральной части небольшое отверстие, а также подвесное кольцо, необходимое для облегчения ориентации всей конструкции относительно горизонта. Срединная деталь составлена несколькими окружностями с нанесенными на них линиями и точками, определяющими широту и долготу. Эти диски называются тимпанами. Угломерный астрономический инструмент обладал тремя такими элементами, каждый из них подходил для определенной широты. Порядок, в котором вкладывались тимпаны, зависел от местности: верхний диск должен был содержать проекцию неба, соответствующего данному участку Земли.

Поверх тимпанов располагалась специальная решетка («паук»), снабженная большим количеством стрелок, указывающих на ярчайшие звезды, обозначенные на проекции. Сквозь отверстия в центре тимпанов, решетки и основы проходила ось, скреплявшая детали. К ней была присоединена алидада — специальная линейка для вычислений.

Точность показаний астролябии поражает: некоторые приборы, например, способны показывать не просто движение Солнца, но и отклонения, периодически возникающие в нем. Интересно, что создавался древний астрономический инструмент в ту пору, когда властвовала геоцентрическая картина мира. Однако представления о том, что все крутятся вокруг Земли, не помешали древним ученым создать такой точный прибор.

Немного истории

Астрономический инструмент имеет греческое название, однако многие его составляющие носят имена арабского происхождения. Причина такого кажущегося несоответствия в длительном пути, который преодолел прибор за период своего становления.

История развития астрономии, как и многих других наук, неразрывно связана с Древней Грецией. Здесь примерно за два столетия до начала нашей эры появился прообраз астролябии. Создателем его стал Гиппарх. Уже во втором веке после Рождества Христова описание схожего с астролябией угломерного прибора сделал Клавдий Птолемей. Он же соорудил инструмент, способный определять на небе.

Эти первые приборы несколько отличались от астролябий, какими их себе представляет современный человек и какие выставлены во многих музеях мира. Первым инструментом привычного строения считается изобретение Теона Александрийского (IV в. н. э.)

Восточные мудрецы

История развития астрономии в период раннего Средневековья стала разворачиваться на территории Связано это было с гонениями ученых со стороны церкви, с приписыванием инструментам, подобным астролябии, сатанинского происхождения.

Арабы усовершенствовали прибор, стали применять его не только для определения местоположения звезд и ориентации на местности, но и как измеритель времени, инструмент для некоторых математических вычислений, источник астрологических предсказаний. Мудрость Востока и Запада слилась воедино, результатом стал прибор астролябия, объединивший в себе европейское наследие с арабской мыслью.

Папа Римский и дьявольский инструмент

Одним из европейцев, стремившихся возродить астролябию, был Герберт Орильякский (Сильвестр II), короткое время занимавший пост Он изучал достижения арабских ученых, научился применять многие инструменты, забытые со времен античности или запрещенные церковью. Его таланты признавались, однако связь с чуждыми исламскими знаниями способствовала возникновению целого ряда легенд вокруг него. Герберта подозревали в связи с суккубом и даже дьяволом. Первый одарил его знаниями, а второй помог занять столь высокое положение в Нечистому приписывалось его восхождение. Несмотря на все слухи, Герберт сумел возродить ряд важных приборов, в том числе и астролябию.

Возвращение

Спустя некоторое время, в XII веке, Европа снова стала пользоваться этим прибором. Сначала в ходу была только арабская астролябия. Это был для многих новый инструмент и лишь для некоторых — забытое и модернизированное наследие предков. Постепенно начали появляться аналоги местного производства, а также длинные ученые труды, связанные с применением и устройством астролябии.

Пик популярности прибора пришелся на эпоху Великих открытий. В ходу была морская астролябия, помогавшая определять, где оказалось судно. Правда, она обладала особенностью, сводившей на нет точность данных. Колумб, подобно многим своим современникам, путешествовавшим по воде, жаловался, что этот прибор невозможно использовать в условиях качки, он эффективен, только когда под ногами неподвижная земля или на море полный штиль.

Определенную ценность для мореплавателей прибор все же представлял. Иначе не назвали бы в его честь один из кораблей, на которых отправилась в путешествие экспедиция знаменитого исследователя Жана Франсуа Лаперуза. Корабль «Астролябия» — один из двух, участвовавших в экспедиции и таинственно исчезнувших в конце восемнадцатого века.

Украшение

С наступлением эпохи Возрождения «амнистию» получили не только различные приспособления для исследования окружающего мира, но и предметы декора, страсть к коллекционированию. Астролябия — это прибор, кроме прочего, часто использовавшийся для предсказаний судьбы по движениям звезд, а потому он был украшен различными символами и знаками. Европейцы переняли у арабов привычку создавать точные в плане измерений и элегантные внешне приборы. Астролябии стали появляться в коллекциях придворных. Знание астрономии считалось основой образования, обладание прибором подчеркивало ученость и вкус владельца.

Венец коллекции

Красивейшие приборы инкрустировались драгоценными камнями. Указателям придавалась форма листьев и завитков. Для декорирования инструмента использовалось золото и серебро.

Некоторые мастера практически целиком посвящали себя искусству создания астролябий. В XVI веке самым знаменитым из них считался фламандец Гуалтерус Арсениус. Для коллекционеров его изделия были эталоном красоты и изящества. В 1568 году ему была заказана очередная астролябия. Прибор для измерения положения звезд предназначался полковнику австрийской армии Альбрехту фон Валленштейну. Сегодня хранится в музее им. М.В. Ломоносова.

Окутанная тайной

Астролябия, так или иначе, проскальзывает во многих легендах и мистических событиях прошлого. Так, арабский этап ее истории подарил миру миф о вероломном султане и ученых способностях придворного астролога Бируни. Правитель, по скрытой в веках причине ополчившийся на своего предсказателя, решил с помощью хитрости избавиться от него. Астролог должен был точно указать, каким выходом из зала воспользуется его хозяин, или же понести справедливое наказание. В своих вычислениях Бируни воспользовался астролябией и, записав результат на клочок бумаги, спрятал его под ковер. Хитрый султан приказал слугам вырубить в стене проход и вышел через него. Вернувшись, он открыл бумагу с предсказанием и прочел там сообщение, предугадывавшее все его действия. Бируни был оправдан и отпущен.

Неумолимое движение прогресса

Сегодня астролябия — это часть прошлого астрономии. Ориентация на местности с ее помощью перестала быть целесообразной уже с начала XVIII века, когда появился секстант. Периодически прибором все же пользовались, но еще спустя век или чуть больше астролябия окончательно перекочевала на полки коллекционеров и любителей древностей.

Современность

Приблизительное понимание устройства и функционирования прибора дает современный его потомок — планисфера.

Это карта, на которую нанесены звезды и планеты. Ее составляющие, стационарная и подвижная части, во многом напоминают основу и диск. Для определения правильного положения светил в конкретной части неба необходим верхний движущийся элемент, соответствующий по параметрам нужной широте. Схожим образом ориентируется и астролябия. Своими руками можно даже изготовить подобие планисферы. Такая модель даст представление и о возможностях ее древнего предшественника.

Живая легенда

Готовую астролябию можно купить в сувенирных лавках, иногда она появляется в коллекциях декоративных изделий, берущих за основу стиль сим-панк. Рабочие приборы найти, к сожалению, трудно. Планисферы также редки на прилавках наших магазинов. Интересные экземпляры можно обнаружить на заграничных сайтах, но стоить такая подвижная карта будет, как тот самый чугунный мост. Самостоятельное конструирование модели может оказаться делом, требующим массы времени, но результат стоит того и точно понравится детям.

Звездное небо, столь всеобъемлюще занимавшее умы древних, поражает своей красотой и загадочностью и современного человека. Такие приспособления, как астролябия, делают его немного ближе к нам, чуть понятнее. Музейный или сувенирный вариант прибора к тому же дает возможность ощутить мудрость наших предков, и две тысячи лет назад создававших инструменты, позволяющие довольно точно отображать мир и находить наше место в нем.

Сегодня астролябия — стильный сувенир, интересный своей историей и притягивающий взгляд необычностью конструкции. Когда-то это было значительным прорывом в астрономии, позволяющим соотнести положение небесных тел с местностью, практически единственным шансом на понимание, где на просторах океана или пустыни затерялся путник. И пусть прибор значительно проигрывает в функциональном плане своим современным аналогам, он всегда будет значимой частью истории, предметом, окутанным романтическим покровом тайны, а потому вряд ли затеряется в веках.

Астрономические инструменты и приборы - оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы , лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. Электромагнитное излучение небесных тел ), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге . Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру .

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

В 1668 г. И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам. Позже совершенствованием этой системы телескопов занимались М. В. Ломоносов и а В. Гершель . Последний добился особенно больших успехов в сооружении рефлекторов. Постепенно увеличивая диаметры изготавливаемых зеркал, В. Гершель в 1789 г. отшлифовал для своего телескопа самое большое зеркало (диаметром 122 см). В то время это был величайший в мире рефлектор.

В XX в. получили распространение зеркально-линзовые телескопы , конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и советским оптиком Д. Д. Максутовым (1941).

В 1974 г. закончилось строительство самого большого в мире советского зеркального телескопа с диаметром зеркала 6 м. Этот телескоп установлен на Кавказе - в Специальной астрофизической обсерватории . Возможности нового инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере (систематические наблюдения такого рода позволяют изучать движения небесных светил); для определения скорости движения небесных светил вдоль луча зрения (лучевые скорости); для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

К числу астрометрических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг , используемый для составления точных каталогов положений звезд; пассажный инструмент , служащий для точных определений моментов прохождения звезд через меридиан места наблюдений, что нужно для службы времени .

Для фотографических наблюдений используются астрографы .

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф ), фотометрических (астрофотометр ), поляриметрических и других наблюдений.

Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники (см. Телевизионный телескоп ), а также фотоэлектронных умножителей .

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры , а также инструменты, применяемые в рентгеновской астрономии , гамма-астрономии , инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп , коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль , спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Для измерения положений изображений звезд на астрофотографиях и изображений искусственных спутников относительно звезд на спутникограммах служат координатно-измерительные машины . Для измерения почернений на фотографиях небесных светил, спектрограммах служат микрофотометры .

Важный прибор, необходимый для наблюдений, - астрономические часы .

При обработке результатов астрономических наблюдений используются электронные вычислительные машины.

Существенно обогатила наши представления о Вселенной радиоастрономия , зародившаяся в начале 30-х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50-е гг. XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос - картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях . Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из-за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являются советские орбитальные станции "Салют".

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.

Астрономические инструменты и приборы - оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы, лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. ), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру.

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

Как сделать астролябию?

Астролябию для измерения гори­зонтальных углов и определения ази­мутов светил вы можете сделать, имея компас и транспортир. Остальные не­обходимые детали, чтобы не искажать показания компаса, нужно изготав­ливать из подручных немагнитных ма­териалов.

Вырежьте диск из многослойной фанеры, текстолита или оргстекла. Диаметр диска должен быть таким, чтобы на нем разместилась круговая шкала (лимб) из транспортиров и за ней оставалось бы свободное поле шириной 2-3 см. Если у вас есть, на­пример, самые маленькие из выпускае­мых транспортиров с дугой диаметром 7,5 см, то понадобится диск попереч­ником 14-15 см.

Другая важная деталь будущей астролябии - визирная планка. Ее вы сможете изготовить из полоски лату­ни или дюралюминия шириной 2- 3 см и длиной, превышающей попереч­ник диска на 5-6 см. Выступающие за край диска концы полоски изогните под прямым углом вверх и пропилите в них продолговатые или круговые визирные отверстия. На горизонталь­ной части планки симметрично центру проделайте две более широкие проре­зи, чтобы через них можно было ви­деть показания лимба. Готовую к мон­тажу визирную планку ее серединой с помощью болта, шайб и гаек при­крепите к центру диска так, чтобы она могла вращаться в горизонтальной плоскости. На визирную планку по центру укрепите компас. Для этого, как и для установки круговой шкалы, используйте имеющиеся в продаже высококачественные универсальные клеи. Лимб вы можете составить из двух транспортиров (школьные тран­спортиры изготовляются из легкого немагнитного материала).

В 1668 г. И. Ньютон построил телескоп-рефлектор, который был свободен от многих оптических недостатков, свойственных рефракторам. Позже совершенствованием этой системы телескопов занимались М. В. Ломоносов и В. Гершель. Последний добился особенно больших успехов в сооружении рефлекторов. Постепенно увеличивая диаметры изготавливаемых зеркал, В. Гершель в 1789 г. отшлифовал для своего телескопа самое большое зеркало (диаметром 122 см). В то время это был величайший в мире рефлектор.

В XX в. получили распространение зеркально-линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и советским оптиком Д. Д. Максутовым (1941).

В 1974 г. закончилось строительство самого большого в мире советского зеркального телескопа с диаметром зеркала 6 м. Этот телескоп установлен на Кавказе - в Специальной астрофизической обсерватории. Возможности нового инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере (систематические наблюдения такого рода позволяют изучать движения небесных светил); для определения скорости движения небесных светил вдоль луча зрения (лучевые скорости); для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

К числу астрометрических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг, используемый для составления точных каталогов положений звезд; пассажный инструмент служащий для точных определений моментов прохождения звезд через меридиан места наблюдений, что нужно для службы времени.

Для фотографических наблюдений используются астрографы.

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.

Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники (см. ), а также фотоэлектронных умножителей.

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры, а также инструменты, применяемые в рентгеновской астрономии„ гамма-астрономии, инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Астрономические грабли

Свое название этот простой самодель­ный инструмент для измерения углов на небе получил за внешнее сходство с садовыми граблями.

Возьмите две дощечки длиной 60 и 30 см, шириной 4 см и толщиной 1 -1,5 см. Поверхность их тщательно обработайте, например, с помощью мелкоабразивной шкурки, а затем скрепите обе дощечки между собой в форме буквы Т.

К свободному торцу более длинной дощечки прикрепите визир - не­большую металлическую или пласт­массовую пластинку с отверстием. Приняв за центр окружности визир­ное отверстие, проведите на плоскости меньшей дощечки дугу радиусом 57,3 см с помощью шнура соответст­вующего размера. Один его конец прикрепите к визиру, а к другому концу привяжите карандаш. Вдоль прочерченной дуги укрепите ряд зубь­ев (штифтов) на расстоянии 1 см друг от друга. В качестве штифтов исполь­зуйте булавки или тонкие гвоздики, пробитые с нижней стороны дощечки (для безопасности гвоздики следует затупить напильником). Два штифта, отстоящие друг от друга на 1 см, при рассмотрении через визирное отвер­стие с расстояния 57,3 см видны на угловом расстоянии в 1°. Всего надо укрепить 21 или 26 штифтов, что бу­дет соответствовать наибольшему до­ступному для измерений углу 20° или 25°. Для удобства пользования инст­рументом первый, шестой и т. д. зубья сделайте выше остальных. Более вы­сокие зубья отметят интервалы в 5°.

Размер визирного отверстия должен быть таким, чтобы сквозь него можно было видеть все штифты одновре­менно.

Чтобы ваши астрономические граб­ли имели более приятный внешний вид, покрасьте их масляной краской. Штифты сделайте белыми - так они будут лучше видны вечером. Мень­шую дощечку раскрасьте светлыми и темными полосками шириной 5 см каждая. Их границами должны быть высокие штифты. Это также облегчит работу с инструментом в темное время суток.

Прежде чем воспользоваться астро­номическими граблями для наблюде­ния небесных объектов, испытайте их для определения угловых размеров и расстояний между земными пред­метами в дневное время.

Вы выполните более точные угло­вые измерения, если сделаете цену деления 0,5°. Для этого либо зубья ставьте на расстоянии 0,5 см друг от друга, либо увеличьте в 2 раза длину большей дощечки. Правда, пользо­ваться астрономическими граблями с ручкой столь большой длины менее удобно.

Для измерения положений изображений звезд на астрофотографиях и изображений искусственных спутников относительно звезд на спутникограммах служат кooрдинатно-измерительные машины. Для измерения почернений на фотографиях небесных светил, спектрограммах служат микрофотометры.

Важный прибор, необходимый для наблюдений, - астрономические часы.

При обработке результатов астрономических наблюдений используются электронные вычислительные машины.

Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30-х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50-е гг. XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос - картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из-за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являются советские орбитальные станции «Салют».

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Понравилась статья? Поделиться с друзьями: